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In this paper, we have proposed and implemented a methodology for assembly sequence 
optimization by using a nature-inspired meta-heuristic algorithm, known as hybrid cuckoo-search 
genetic algorithm (CSGA) algorithm. The cost criteria for optimization in the present formulation 
take into consideration the total assembly time and the number of reorientations during the 
assembly process. To demonstrate the application of the CSGA algorithm, an example assembly 
containing 19 parts has been presented and the results have been compared with those of another 
meta-heuristic algorithm, Genetic Algorithm (GA). From the results, it has been observed that for 
the given problem, the CSGA algorithm not only produces optimal assembly sequences with costs 
comparable to that of GA, but the convergence of CSGA algorithm has been found to be faster 
than the GA algorithm. 
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search genetic algorithm. 

1.   Introduction 

Assembly is one of the most important processes during the manufacturing of a product 
because it is during the assembly phase that the final product is obtained from the 
individual components. More than 40% of the manufacturing cost is estimated to be spent 
on assembly, and assembly accounts for almost 20 – 70% of all the manufacturing work.  
The assembly process planning involves detailing the plan for the assembly of the 
product according to the design specifications. Assembly process planning can be divided 
into two tasks namely, assembly sequence planning and assembly task planning. An 
assembly sequence plan (ASP) is the sequence of assembly operations of individual 
components in a particular order. Determining the optimal assembly sequence for a given 
assembly is considered as a combinatorially exponential problem. With the increasing 
number of parts within the assembly, the number of assembly sequences grows 
exponentially, so the optimal assembly sequence determination by searching the entire 
solution space can be very tedious. The different optimization criteria of an ASP include, 
for example, degree of difficulty of assembly operation, subassembly stability, time 
necessary to accomplish assembly tasks, costs of tooling and hardware required, costs of 
fixturing, change in the direction of the assembly etc. There are two main approaches to 
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the generation of assembly plans: manual planning and computer aided process planning. 
Manual planning is based on the process planner’s expertise and information on the 
connection between pairs of parts and the feasibility of the assembly process. This 
method can be tedious for assemblies consisting of large number of components because 
of its complexity as well as considerably large amount of time needed. Computer aided 
process planning methods are mainly based on graph search techniques to search for an 
optimal path in the graph representation of assembly operations, cut-set algorithms where 
the assembly is decomposed into all possible subassemblies, and evaluating optimal 
assembly sequence from the information on the individual subassemblies etc. Computer 
aided process planning techniques can be divided into techniques that involve traditional 
search algorithms like graph search algorithms, and AI and soft computing techniques 
like Knowledge based system, Fuzzy reasoning based approaches, population search 
based approaches like genetic algorithms (GA), memetic algorithm, particle swarm 
optimization (PSO), ant colony optimization (ACO), Cuckoo Search (CS) etc. Traditional 
approaches tend to search for the entire solution space and obtain the optimal sequence. 
They are time consuming (exponential in nature) as assembly sequence planning problem 
is an NP hard problem. Soft computing techniques have been proved to be effective for 
solving NP hard problems. 
The research work reported in this paper aims at obtaining the optimal assembly 
sequence of a given assembly using hybrid cuckoo-search genetic algorithm and also 
using genetic algorithm, both being nature inspired meta-heuristics (soft computing 
techniques), and then comparing the results obtained by both techniques. 

2.   Review of previous research 

Since the early 1980s, numerous research works have been reported on the assembly 
sequence generation and planning. Bourjault [1] presented the liaisons diagram (the 
‘graphe de liaisons fonctionelles’), which is a graph devised to represent an assembly. 
Based on this diagram, a list of ‘‘Yes–No’’ questions are generated, and by answering 
these questions about the feasibility of assembly of parts, the assembly sequence is 
determined. But for an assembly of n parts, his method unfortunately requires answering 
a minimum of 2n2 “yes or no” questions and hence is very time consuming. De Fazio and 
Whitney [2] were able to improve upon this work and were able to reduce the number of 
questions to 2n by altering the question’s form. Their questions are not ‘‘yes–no’’, and 
require geometric reasoning and anticipation by the user. While this improvement made 
Bourjault’s work more applicable, it is still unreasonable to have to ask the user so many 
questions for components with large number of parts. Heemskerk [3] et al. proposed an 
approach for assembly sequence planning, using heuristics in several stages. In the first 
stage parts are grouped together to reduce the combinatorial complexity. In later stages, 
iterative search techniques were used. Homem and  Sanderson [4] proposed  an  
AND/OR  graph  representation  for all  the  possible  configurations  of  the  assembly  
and  generated the  assembly  sequences  for  a  product  using  a  disassembly or  
decomposition  method  based  on  the  assumption  that  the disassembly  sequence  is  
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the  reverse  of  a  feasible  assembly sequence. Gottipolu and Ghosh [5] proposed a 
novel approach which involved extracting geometric and mobility constraints extracted 
directly from the CAD model of the assembly and translating them into relevant matrices, 
and an algorithmic procedure is used to generate all feasible assembly sequences from 
these two matrices. Alfadhlani et al [6] presented a methodology for automatic retrieval 
of geometrical data of components directly from the CAD system and then using an 
algorithm for automatic detection of the collision-free path of an assembly based on 
mating type, the normal vector direction, and the surface shape of contacted component. 
Ben Arieh  and  Kramer [7] presented  a  methodology  and  algorithms  to generate  
consistently  all  feasible  assembly  sequences  considering  the  various  combinations  
of  subassembly  operations. The algorithms are implemented using a LISP program.  
Also, Ben-Arieh [8] used  a  fuzzy set based method  to evaluate  the degree of  difficulty  
of  each  assembly  operation  and  then  selected  a "best"  sequence  of  assembly  
operations.  Dong et al. [9] proposed a knowledge-based approach to the assembly 
sequence planning problem. They proposed a CSBAT (connection-semantics-based 
assembly tree) hierarchy which provides an appropriate way to consider both geometric 
information and non-geometric knowledge. They proposed the structure of the KBASP 
(knowledge-based assembly sequence planning) and they proposed different ways to 
construct plans for a CSBAT: by retrieving the typical base, by retrieving the standard 
base, and by geometric reasoning. Various soft computing based approaches have also 
been developed by researchers for assembly sequence planning and optimization. One of 
the earliest attempts to solve the combinatorial explosion problem of Assembly Sequence 
Planning (ASP) using GA was by Bonnevile et al [10]. They used GA on the possible 
assembly sequences given by an experienced assembly expert as the starting point of the 
evolution computing, and encoded every possible assembly plan as an assembly tree in a 
chromosome. Chen [11] also adopted a genetic ASP method which uses five genetic 
operators to generate offspring and introduces a double level genetic structure to adjust 
the control parameters of computing dynamically. Guan et al. [12] proposed a gene-
group-based evolution approach to obtain sequences for the whole assembly process plan 
rather than just assembly sequence plan. They have designed a compound chromosome 
encode which has all the information regarding a particular operation, to represent 
abundant assembly process information, and several specific genetic operators are used to 
generate offspring individuals. Wang et al. [13] studied the application of ACO algorithm 
proposed by Dorigo et al [14] to the ASP problem. They considered the assembly by 
disassembly technique. They used the concept of interference matrix (named as 
disassembly matrix) to generate dynamically and implicitly the graph connecting various 
disassembly operations which are taken as nodes and edges between them to represent 
the feasibility of successive operations. Gao et al. [15] used the memetic algorithm to 
determine the Assembly sequences. The memetic algorithm (MA) combines the parallel 
global search nature of evolutionary algorithms with local search to improve individual 
solutions. However, the fitness function used for individual solution depends not only on 
the assembly costs but also on the feasibility of the sequence provided so the algorithm 
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may not necessarily provide feasible solutions. Li et al. [16] attempted to combine the 
genetic algorithm and tabu search techniques and applied it to the ASP problem. Choi et 
al. [17] considered application of genetic algorithm for multi-criteria assembly sequence 
planning. Total assembly time and number of reorientations are taken as the optimization 
criteria. The operators used ensure the feasibility of the produced sequences. Sung et al. 
[18] introduced an evolutionary method for solving travelling salesman problem with 
precedence constraints. The various parameters within the algorithm are adapted 
(changed) with the number of iterations based on the performance over the iterations. 
Yun et al. [19] proposed a GA approach with topological sort-based representation 
procedure for solving various types of PCSP. Yang et al. [20] proposed cuckoo search 
algorithm, a nature inspired meta-heuristic which is inspired from the obligate brood 
parasitic behaviour of certain cuckoo species. The proposed algorithm is largely 
applicable to continuous optimization problems.  Lim et al. [21] proposed a hybrid 
cuckoo-search genetic algorithm approach for optimization of hole-making operations, 
which is a combinatorial optimization problem. Nilakantan et al. [22] proposed a hybrid 
cuckoo search and particle swarm optimization (CS-PSO) approach for robotic assembly 
line balancing, which is a well-known NP-hard problem with the objective of minimizing 
the cycle time. 

In the current paper, we propose to solve the problem of assembly sequence planning 
and optimization using a nature inspired soft computing based meta-heuristic algorithm 
known as hybrid cuckoo-search genetic algorithm (CSGA) and show the results of 
comparison with the genetic algorithm. 

3.   Proposed Methodology for the assembly sequence optimization 

3.1 Optimization Criteria 
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The optimization criteria used in the present paper are minimization of total assembly 
time and number of reorientations. A reorientation is a change in the direction of 
assembly or insertion. Oftentimes, while performing the assembly of the final product, 
we cannot assemble the present component in the same direction as that of the previously 
assembled component. This requires rotating the subassembly by some angle about the 
axis of insertion or about an axis perpendicular to the insertion axis. This operation is 
called reorientation. A combined fitness function [17] to minimize the above two criteria 
is used. A fitness function is an empirical function which provides a score for each 
assembly sequence (solutions to the problem) that we generate using the algorithm. In the 
present scenario, the lower the score for the assembly sequence provided by the fitness 
function, the better is the assembly sequence. The total assembly time is quantified as 
follows. The setup time is given by: 

 (1) 

where 

n number of components 

i component to be assembled 

  setup time for product i being the first component in the assembly 

  contribution to the setup time due to the presence of part j when entering part i 
 
 
 

(2) 
The total assembly time is the summation of setup time and actual assembly time 
 
 

(3) 

where  is the assembly time for component i. 

The number of reorientations is calculated as follows: 
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(4) 
The total number of reorientations is: 
 

                       (5) 

The combined objective function is given by: 

          (6) 

Here, Z represents the combined fitness function considering both the criteria, i.e., 
amount of assembly time and number of reorientations, and wi represents the weight or 
priority that we give to individual criteria. More the weight given to a particular criterion, 
more is the likelihood that the final solution will satisfy that criterion better. 

Z        combined fitness function 

wi       weight of the individual function 

Our objective is to minimize the above function. 

3.2 Solution Representation 

In this paper, the solution is represented by the assembly sequence, i.e., the sequence of 
parts represents the assembly sequence. For example if the number of components is 6, 
numbered 1 to 6, then 2 – 1 – 3 – 4 – 6 – 5 represents a possible solution. The feasible 
solutions must satisfy the precedence constraints for each part. The precedence 
constraints are represented by a matrix PM, where 

 

 

(7) 

We define for each component i, i = 1,…,n 
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(8) 

where 

 (9) 

  (10) 

If for a particular solution or assembly sequence, P is zero, then that solution is feasible, 
else infeasible. Here non-zero value of P for a solution indicates that one of the 
components that requires the presence of a later assembled component, is assembled 
early. This is infeasible. 
To estimate the total assembly time, the contribution of a component to the assembly 
time of a given component is given by the Setup matrix (SM). SM(i, j) gives the 
contribution of component j to the assembling time of component i. For example if 
components 2, 5, 7 are already assembled and component 1 is being assembled, then the 
setup time for component 1 is: 
ST(1) = SM(1, 2) + SM(1, 5) + SM(1, 7) (11) 
where ST(i) is the setup time required for component ‘i’ 

Reorientation of the subassembly may be required based on the component being 
assembled because the component may have geometric constraints with the components 
already assembled. This information can be obtained from the reorientation matrix (RM), 
where the row number indicates the component being assembled and the elements in the 
row, the components already assembled in that order. If for the components being 
assembled, the components already assembled and their order matches exactly with any 
one of the elements present in that row, then there will be a reorientation for that 
particular component [16]. 

Consider the reorientation matrix provided in table 3. Let the current subassembly 
consists of components 0, 3, and 4 and the subassembly is formed by components 
assembled in that order. If the current component being assembled is 2, then as the 
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assembly order 0 – 3 – 4 is present in the reorientation matrix for component 2, there will 
be a reorientation in this case. 

3.3 Genetic Algorithm (GA) 

The algorithm used searches only feasible solution space to find the optimal or near-
optimal solution. The various operators used are inspired from [18]. The functionality and 
the operators used in the algorithm are given below: 

3.3.1 Generation of initial population 

The initial population can be generated based on topological sort [19]. The procedure 
used to generate one individual of the population is given below: 

1. Create an empty list which denotes the chromosome to be built. 

2. While there are still nodes left: 

3.  Get the set of all nodes which have no precedence constraints. 

4. Randomly select one of the nodes from the above set and append the node to the         
chromosome list. 

5. Remove the node and its precedence dependencies from the precedence graph or 
matrix. 

The initial population can be generated by using the above procedure the required 
number of times. 

3.3.2 Crossover 

The crossover operator requires two chromosomes and produces a single new 
chromosome. The offspring chromosome is created by incremental inclusion of 
selectable nodes [19]. The procedure to crossover two chromosomes is given below. Here 
L is the length of each chromosome i.e., the number of components in the assembly: 

1. Create a graph G = (N, A) of TSPPC. Set l = 1 

2. Create a selectable node set E from G. 

3. Select two lth genes from both parent chromosomes. We have four possible cases as 
follows.  

Case 1. Two selected genes are different and found in E. Select one arbitrarily. 
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Case 2. Two selected genes are same and found in E. Then select that one. 

Case 3. Only one gene is selected and found in E. Then select that one. 

Case 4. No selected genes are found in E. Then select a gene from E arbitrarily. 

4. Delete the selected node in ‘3’ with the corresponding arcs. 

5. If l = L, terminate, else goto ‘2’. 

3.3.3 Mutation 

Mutation is performed on a chromosome to find a better solution or to jump from local 
minima. In a given chromosome, two positions are chosen randomly and all the genes 
present in between these two selected positions (including the genes at these positions) 
are sorted by topology. This procedure ensures the feasibility criteria [18]. 

The procedure for the algorithm is given below: 

1. Initialize the various parameters like population size (n), the number of times a 
crossover is performed in an iteration (n_c), the initial population, crossover probability 
(p_c), mutation probability (p_m), maximum number of iterations (iter_max), and set 
present iteration count (iter_count) to 1 

2. While iter_count <= iter_max: 

3. Create a new child set 

4.  Loop for n_c times: 

5.  Generate a random number, r. The random number will be between 0 and 1. 

6. If r < p_c: 

7. Get two chromosomes parent1 and parent2 from the population randomly, with    
probability of selecting a chromosome inversely proportional to its fitness function 

8. Perform crossover to get a new child chromosome child1 

9. Generate a random number, r. The random number will be between 0 and 1. 

10. If r < p_m: 

11. Perform mutation on child1 

12. Add child1 to the child list 
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13. Choose the n best individuals from population and the child list and assign the 
population to this new set of n individuals 

14. Identify the current best solution and if the current best solution is better than the 
overall best solution, replace the overall best solution by the current best solution 

15. Increase iter_count by 1 

3.3.3 Proposed Hybrid Cuckoo Search Genetic Algorithm 

Cuckoo search (CS) is a nature-inspired meta-heuristic proposed by Yang and Deb 
(2009) [19], which was inspired by the obligate brood parasitism of some cuckoo species, 
which lay their eggs in the nests of other host birds. Because the use of the operators in 
the original CS may lead to infeasible sequences, the CS operators are hybridized with 
that of the GA operators mentioned above to maintain and produce feasible solutions. For 
the initial population, crossover and mutation, the same operators as mentioned in the GA 
are used. The overall procedure for the CSGA algorithm inspired from [21] is given 
below: 

1. Initialize the number of nests (n), fraction of nests to be rejected (p_a), random 
solution in each nest, total number of iterations (iter_max), and present iteration 
count (iter_count) to 1. 

2. While iter_count <= iter_max: 

3. Select two random solutions and perform crossover to get a new solution 

4. Get a random nest from all the nests. 

5. If the fitness of the new solution is better than fitness of the solution in the 
selected nest: 

6. Replace the solution in the nest with the new solution. 

7. Select a random nest and perform mutation on the solution in the nest. 

8. Nests are sorted by their fitness and the n*p_a number of low fitness solutions in 
the nests are replaced with new solutions. 

9. Identify the current best solution and if the current best solution is better than the 
overall best solution, replace the overall best solution by the current best 
solution. 

10. Increase iter_count by 1. 

4.   Illustrative example: Results and Discussions  
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A product with 19 components taken from literature [17] is considered. Table 1 shows 
the Precedence Matrix (PM) for the product, Table 2 gives the Setup Matrix (SM) and 
Table 3 gives the Reorientation Matrix (RM). 1000 iterations have been performed on 
both the algorithms with an initial population of 15. The numbering of the components 
starts from zero, i.e., if there are 5 components in a product, then the components are 
numbers as 0, 1, 2, 3, 4. Both the algorithms are run 100 times for getting the average 
behaviour during a typical run. The algorithms are implemented in the python 
programming language and executed on a core 2 duo 2.2Ghz processor with 3GB RAM 
on Linux Mint 13 operating system. 

4.1.   Results of GA 

The number of times crossover is performed in every iteration is taken equal to the 
population count, the crossover probability is taken as 0.8 and mutation probability as 
0.2. The GA convergence plots for average fitness (i.e. mean of the fitness values across 
the entire population) and the best fitness are shown in Fig. 1. (In this case, the plot for 
average fitness is found to closely follow the plot for best fitness, that is why the two 
plots appear to be overlapping in the figure). 
The best sequence obtained with GA and its fitness are 1, 0, 3, 8, 2, 11, 12, 15, 4, 14, 17, 
10, 5, 6, 7, 9, 13, 16, 18 and 528.3 respectively. 

4.2.   Results of CSGA  

The fraction of nests to be replaced during each iteration (p_a) is taken to be 0.25. The 
CSGA convergence plots for average fitness and best fitness are shown in Fig. 2. 
The best sequence obtained with CSGA and its fitness are 1, 0, 3, 8, 2, 11, 12, 15, 4, 14, 
17, 10, 5, 6, 7, 9, 13, 16, 18 and 528.3 respectively, which is the same as that obtained by 
GA. 
The average time taken for the execution of both the algorithms is shown in Table 4. 
Clearly the time taken for convergence by GA is far more than that of CSGA. In this 
paper, we have implemented a methodology for assembly sequence optimization by using 
CSGA and compared the results with the GA. 

5.   Conclusions 

The research work reported in this paper aims at obtaining the optimal assembly 
sequence of a given assembly using hybrid cuckoo-search genetic algorithm and also 
using genetic algorithm, and then comparing the results obtained by both the techniques. 
The optimization criteria considered are the total assembly time and the number of 
reorientations. Both CSGA and the GA are population based techniques but the operators 
used in these algorithms ensure the feasibility of the produced sequences. From the 
results, it has been observed that for the given problem, the CSGA algorithm not only 
produces optimal assembly sequences with costs comparable to that of GA, but the 
convergence of CSGA algorithm has been found to be faster than the GA algorithm. The 
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scope of future work includes the use of other criteria such as subassembly stability, 
fixture changes etc. to determine the optimality of assembly process plans. 
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Table 1 Precedence Matrix 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0  1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 

8 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

13 0 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

16 0 1 0 1 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

18 0 1 0 1 0 1 1 1 1 1 0 0 0 1 0 0 1 0 0 

 

Table 2 Setup Matrix 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

0 10 1 2 3 4 5 6 7 8 9 3.2 4.3 7 6.1 1.2 3.4 0 0 7.4 

1 1.5 10 2 2 2 2 2 2 2 2 0 3.1 6 4.3 2.7 4.8 0 3 0.5 

2 1 2.3 10 0 4 5 0 4 2.3 4.3 9.8 2.4 5 1.2 3.4 4.5 5.6 3.4 3.1 

3 0 2 3.4 10 4.5 0 4 0 8 0 3.4 5.6 5 0 0 3.4 0 0 9.8 

4 1.2 1 2 3 10 7.9 8.9 0 1.2 2 2.3 0 3 0 3.6 0 2.8 9.8 0 

5 9.8 4.5 0 1.2 3.6 10 3.4 4 0 2.3 4.6 5.6 0 4 3 2 0 0.4 3.2 

6 0.5 1.4 2.3 0.5 1.9 1 10 13.4 1.2 4 2.3 0 3 5.7 8.3 2 0.1 0 0.5 

7 0 0 0 0 0 1.8 9.8 10 2.3 3 8.9 2.3 0 0 2.3 0.5 9.8 0 2.3 

8 1 3 4.5 2.3 4.6 9.8 7.5 6.8 10 6 2.3 3.4 5 12.3 3.4 5.61 1 0 0 

9 2.3 4.5 2.3 0 2.3 0 2.1 0 4.5 10 1.1 2.3 2 0 0 2.1 1.2 5.4 9.2 

10 1 1 2 3 4 5 6 7 8 9 10 4.5 3 6.1 1.2 3.4 0.3 0 1.3 

11 1.5 0 2 2 2 2 2 1 2 2 11.2 10 6 4.3 2.7 4.8 0 3 0.5 

12 1 2.3 0 0 4 5 0 4 2.3 4.3 9.8 2.4 10 1.2 2.4 4.5 1.6 2.4 3.1 
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13 0 2 3.4 0 4.5 0 4 0 8 0 3.4 5.6 5 10 2.1 1.4 1 0 2.8 

14 1.2 1 2 3 0 7.9 8.9 0 1.2 2 1.3 4 3 1.4 10 1.3 9.8 9.8 2 

15 9.8 4.5 0 1.2 3.6 0 3.4 4 0 2.3 4.6 3.6 0 4 3 10 1.5 0 3.2 

16 1 3 4 5 0 5 4 3.4 1.2 4 1.3 0 2 3.7 4.3 2.3 10 3.8 10 

17 0.6 0.5 3.4 1.2 3 2 9.8 2 2.3 3 5.9 2.3 0 1.0 2.3 0.5 9.8 10 2.3 

18 1 3 4.5 2.3 4.6 9.8 7.5 6.8 0 6 3.3 3 2 3.3 4.4 2.6 0.3 2.5 10 

 

 

Table 3 Reorientation Matrix 

Part Set of Reorientation 

0 {3, 8} {8, 10} {3, 5, 10} {10, 6} {6, 8} {5, 4} {12, 11, 17} 

2 {4, 1} {0, 3, 4} {15, 17} {1, 0, 5} {1, 0, 3, 4} {12, 8, 3} {8, 5, 1} {5, 1, 9} {17, 16} 

6 {4, 11, 5} {11, 5, 0} {8, 5, 15} {18, 1, 3, 8, 7} {11, 5} {6, 4} {8, 4} {9, 7, 5, 3} 

7 {5, 6, 15} {8, 5, 4, 6} {11, 6} {14, 1} {15, 14, 4} {8, 4, 0} 

9 {15, 7} {5, 6, 7} {14, 0} {6, 2} {8, 3} {18, 16, 2} 

10 {3, 8, 15} {11, 12} {11, 4, 8} {12, 5, 15} {12, 11} {15, 17, 2} 

15 {5, 6} {11, 5} {10, 8, 5} {4, 2, 17, 10, 12} {12, 11, 3, 18, 17, 5, 4, 2, 7} 

16 {13, 14} {4, 1} {9, 13, 14} {12, 11, 8} {14, 12, 4} {18, 6} 

 

Table 4 Average Execution times of GA and CSGA 

 GA CSGA 

Example (19 parts, 1000 iterations) 14.2s 6.7s 

 
 
 
 



16     GVSK Karthik and S Deb 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.  1 Results of GA 

Fig.  2 Results of GA 

 

 

Fig.  3 Results of CSGA 
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