
 
 

 
Volume 13 Issue 1 

©2011 IJAMS 

 

An Integrated and Intelligent Computer-Aided Process Planning Methodology 

for Machined Rotationally Symmetrical Parts 

Sankha Deb 
Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur-

721302, India. E-mail: sankha.deb@mech.iitkgp.ernet.in 

 

J. Raul Parra-Castillo 
Department of Mechanical Engineering, Escuelas Profesionales de la Sagrada Familia, Cadiz, 

Spain. E-Mail: raul.parra@polymtl.ca 

 

Kalyan Ghosh 
Department of Maths. & Industrial Engineering, École Polytechnique, Université de Montréal, 

Montréal, Québec H3C 3A7, Canada. Email: kalyan.ghosh@polymtl.ca 

 

Abstract: The research work reported in this paper is aimed at developing an integrated and intelligent CAPP 

methodology for machined rotationally symmetrical parts. Two important aspects of process planning, namely the 

machining operations selection and the set-up planning have been automated by this methodology. In addition, a 

methodology has been developed to efficiently extract the required data from the CAD model of the part and then feed it 

to the two process planning g modules. For machining operations selection, a novel back-propagation ANN 

methodology has been developed by prestructuring it with prior domain knowledge in the form of thumb rules. Further, 

an expert system based set-up planning methodology has been developed for automating the tasks of set-up formation, 

operation sequencing and datum selection for rotationally symmetrical parts. It has been implemented using the CLIPS 

rule-based expert system shell. The two process planning modules have been prefaced with a means for automatic 

feature recognition and extraction of CAD data from a commercial CAD software system, CATIA V5. The example of a 

rotationally symmetrical work piece has been analyzed using the proposed methodology to demonstrate their potential 

for application in a real manufacturing environment.  

Keywords: Computer-Aided Process Planning, feature extraction, machining process selection, set-up planning, 

Artificial Intelligence. 

1. INTRODUCTION 

 

The global competition and increasing 

demand for higher quality products at lower 

prices with shorter lead times have led to a 

growing focus on development of Computer 

Integrated Manufacturing (CIM) systems in 

manufacturing industries. In developing a 

CIM system, an automated process planning 

interface can play a key role especially in 

integrating Computer-Aided Design (CAD) 

and Computer-Aided Manufacturing (CAM). 

Consequently, a great deal of research has 

been devoted for developing Computer-Aided 

Process Planning (CAPP) systems that can 

automatically perform the task of process 

planning. A CAPP system, depending on the 

level of sophistication of its capability, may 

involve automating the interface between 

design and process planning as well as various 
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process planning tasks such as process 

selection, machine tool and cutting tool 

selection, set-up planning, fixture selection, 

machining parameter selection and so on. In 

the research work presented in this paper, the 

authors have developed an integrated and 

intelligent CAPP methodology for machined 

rotationally symmetrical parts. The work 

presented here on process planning consists of 

automating the machining operations selection 

using a neural network approach, followed by 

an automated method of doing the various set-

up planning tasks. Research contributions 

have been made in both these areas of process 

planning and they have been described in this 

paper. An interface between design and 

process planning has been created for 

automatic feature recognition from a 

commercial CAD software, CATIA. Using 

this interface, the two process planning 

modules get their necessary data in the desired 

format from the CAD database in a rapid 

manner and the whole integrated methodology 

becomes very efficient. In the next section, the 

pertinent research literature on machining 

operations selection and on set-up planning 

has been briefly reviewed. 

 

1.1. Literature review of generative CAPP 

approaches for machining operations 

selection 

 
The machining operations selection 

has been automated by various researchers 

using approaches such as mathematical 

models, decision trees, expert systems and 

artificial neural network (ANN). Qiao et al [1] 

presented another mathematical model based 

approach for generating different machining 

routes for producing a part.  Shirur et al [2] 

developed an approach for operation selection 

by using a mathematical model for mapping 

the machinable volumes to feasible machining 

operations. Yongtao et al [3] proposed a 

mathematical model for selection of hole 

machining operations that is capable of 

generating an optimal sequence of operations 

by minimizing the number of tool changes. 

Wang et al [4] used a decision tree for 

machining operations selection. It is, however, 

inflexible and incapable of automatically 

acquiring knowledge. Khoshnevis et al [5] 

used a rule based expert system for hole 

making process selection. Wong et al [6] 

developed an algorithm using rule based 

process capability knowledge to generate an 

operations precedence tree, which is refined 

further using rules. Dana et al [7], Eskicioglu 

[8], Sabourin et al [9] and Jiang et al [10] each 

employed a rule based approach for operation 

selection and sequencing for various rotational 

and prismatic parts. Waiyagan et al [11] used 

a set of knowledge based rules and heuristics 

to solve the problem of operation selection 

and sequencing for mill-turn parts. Radwan 

[12] proposed a process selection approach for 

prismatic parts based on relational models 

between surface characteristics and 

manufacturing process capabilities. The expert 

systems are, however, only capable of solving 

problems with explicit rules. If the number of 

rules is large, their encoding and modification 

can become tedious and time consuming, the 

execution times are longer and conflicts 

between rules arise. They lack ability to 

automatically acquire knowledge. Knapp et al 

[13] used a back-propagation ANN that 

proposes machining alternatives, and another 

ANN that selects one alternative. Devireddy et 

al [14] used a back-propagation ANN to 

identify basic manufacturing operations for 

each feature in rotational components, and 

another ANN for refinement of operations.  

Devireddy et al [15] also proposed a back-

propagation ANN for machining operations 

selection of all the features considering global 

operations sequencing. The ANNs are capable 

of automatically acquiring knowledge in the 

form of examples and then generalize. 

Modification of knowledge can be 

accomplished easily through retraining. It 

leads to faster inference compared to decision 

trees and expert systems. However, in spite of 

the above advantages of ANN, choosing 
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training examples is tedious and time-

consuming. Also an issue not adequately 

addressed is whether any prior domain 

knowledge, known to reduce the complexity 

of learning, could be taken advantage of. 

Further, the previous models tend to 

recommend a single operation sequence. 

Keeping in mind the above facts, the authors 

have developed a back-propagation ANN 

methodology for machining operations 

selection in rotationally symmetrical parts, 

which provides many solutions and the best 

one can then be chosen.  

 

1.2 Literature review of generative CAPP 

approaches for set-up planning 

 

 The set-up planning tasks have been 

automated by approaches such as algorithms 

and graph theory based methods, expert 

system, fuzzy logic and neural networks. 

Huang et al [16], Zhang et al [17] and Lee et 

al [18] each used a graph theory based 

approach for set-up formation and datum 

selection for rotational parts. Lee et al [19] 

proposed an approach based on breadth-first 

search of graphs that is capable of generating 

the set-up plan for prismatic parts based on the 

precedence relations among machining 

features and their Tool Approach Directions 

(TAD) that were extracted from the CAD 

database by feature recognition algorithms. 

Huang [20], Gologlu [21] and Ramshbabu et 

al [22] each used an algorithmic approach for 

set-up planning. The above approaches are, 

however, inflexible, and the program must 

contain all possible input-output combinations 

and may need large computing resources. 

Joshi et al [23] used a rule based expert 

system for set-up formation based on 

commonality of Tool Approach Directions 

(TAD), resting face, machines, etc. and 

establishing operation precedences for 

sequencing in prismatic parts. Sabourin et al 

[9] used a rule based expert system combined 

with constraint programming for set-up 

generation and operations sequencing in 

prismatic parts. Kim et al [24] used rules to 

generate precedence constraints and cluster 

operations, and a mathematical model for set-

up formation and operations sequencing 

subject to precedence constraints. Liu et al 

[25] developed a rule based approach for 

determining machining feature precedence 

constraints, an algorithmic approach for 

grouping the features into setups based on 

TADs, and a rule based approach for 

generating the sequence of machining the 

features. The expert system offers a structured 

knowledge representation in rule form, a 

modular architecture, an explanation facility 

and ability to acquire new knowledge through 

introduction of new rules. It, however, is 

unable to automatically acquire the rules and 

its execution time increases with increase in 

number of rules. Ong et al [26] used a fuzzy 

logic based set-up planning approach for 

prismatic parts. It is able to handle 

uncertainty. However, like expert systems it is 

unable to automatically acquire the rules. 

Chen et al [27] used an unsupervised ANN for 

set-up formation. Mei et al [28] used a back 

propagation ANN for datum selection. Chen et 

al [29] used a Hopfield ANN for feature 

sequencing in prismatic parts and simulated 

annealing to find the optimum sequence. Ming 

et al [30] used a self-organising ANN for set-

up formation and a Hopfield ANN for 

operation sequencing in prismatic parts. The 

ANN offers the capability to automatically 

acquire knowledge, adapt to changing 

environments through re-training, and 

generalise. However, its lack of explicit rules 

and vagueness in knowledge representation 

leads to a black box nature. 

The literature review indicates that in 

most of the previous research efforts for 

expert systems applications in set-up planning, 

a mixture of an expert system and some 

algorithmic approach was adopted that is 

inflexible and requires considerable human 

intervention in rewriting of original program 
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when it becomes necessary to modify and 

update the knowledge base. Keeping the 

above in mind, the authors in this paper have 

presented a modular and flexible expert 

system methodology that they have developed 

for set-up planning of rotationally symmetrical 

parts for automating the different set-up 

planning tasks like set-up formation, 

operations sequencing and datum selection. 

 

2. PROPOSED METHODOLOGY FOR 

AUTOMATIC FEATURE 

RECOGNITION FROM CAD 

DATABASE 

 

This section presents the proposed 

methodology (Parra-Castillo [31]) for 

automatic feature recognition from the CAD 

file in CATIA V5 R13 software and for 

extraction of data necessary as input to 

process planning modules of machining 

operations selection and set-up planning to be 

discussed in the subsequent sections. Other 

CAD modeling systems can be also used. The 

extracted input data comprise of types of 

features present in the part (such as holes, 

external steps, external tapers, external 

threads, grooves, faces, slots, keyways and so 

on), their dimensions (such as diameters, 

length of the cylindrical surfaces and so on), 

their dimensional and geometric tolerances, 

their surface finish and also information on the 

neighboring features. To accomplish seamless 

integration with the two process planning 

modules, the extracted data needs to be 

represented in a format directly usable by 

those modules. This has been realized by 

development of a graphical interface and 

making use of macro tool provided in the 

Visual Basic for Applications (VBA) module 

of CATIA. The following discussion treats the 

key issues in development of the methodology 

for automatic feature recognition. 

 

 

 

2.1 Feature recognition and extraction of 

the data from the part model in CATIA 

 

The developed feature recognition software is 

capable of displaying, in different windows, 

all the data contained in the part file, filename 

and location of the text files in which the data 

has been stored. CATIA stores the data of the 

part in different data collections, which can be 

accessed through the macro tool in the VBA 

module. Some of these data collections are 

briefly discussed below.  

 In the Bodies collection, the names of all the 

parts contained in the file can be found, and 

thus any one of them can be extracted and 

displayed by accessing their contents.  

 In Shapes collection, name of every single 

feature created in CATIA can be found.  

 In the Sketches collection, all the basic 

designs done to create the part are contained. 

One can extract the X, Y, Z coordinates of the 

origin of the sketch from which the 

component has been created. The feature 

position in space can be extracted in order to 

place it with respect to others and extract their 

relations and connections. One can thus 

determine the neighboring features. 

 In the Parameters collection, the name and 

the value of the different elements inside a 

feature can be extracted by navigating through 

the different levels of the feature tree. One can 

extract the parent of the feature in order to 

establish the connection between them and 

then extract the coordinates of the feature end 

points and thus determine its length. 

 In the AnnotationSets collection, 

information about tolerances, surface finish 

and datums can be extracted, and thus path to 

the reference surface to which the datum is 

applied can be obtained. The connection 

between the datums and reference surfaces 

can be established through geometrical 

tolerances connected to the datum. This is 

possible because, in CATIA, the datum is 

related to one surface, and at the same time 

the geometrical tolerance is connected to 

another surface, and the third connection is 
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between the datum and geometrical tolerance. 

In the end, one can use these three links to 

establish the two surfaces that are associated. 

The information on the tool approach 

directions is determined by formulating rules. 

For example, if an external cylindrical surface 

has the largest diameter, then it is assigned the 

left-right approach direction. Then for all the 

surfaces to the left of it, the tool approach 

direction left is assigned, and for all other 

surfaces to the right of it, the tool approach 

direction right is assigned. In a similar 

manner, the tool approach directions for 

internal features such as holes can be 

determined.   

 

2.2 Storing the extracted data 

 

After having extracted all the necessary data, 

their types are known and one can create 

variables of the same type to store their 

values. For example, all the names are of the 

type String and the values are of the type 

Double. Also there exists the data type 

ValueString, e.g. 50mm, that is composed of a 

number followed by a string of characters. In 

order to store this value, the string has to be 

separated from the number to be able to 

perform mathematical operations on them. 

Special variables to store the data and 

containing as many attributes as necessary 

have been created, e.g. feature.Name, 

feature.Diameter,feature.Length,feature.Intern

al,feature.StartPoint,feature.PerpendicularToP

rincipalAxis and so on. The feature 

recognition software looks for data required 

by the CAPP system and stores them in the 

created variables, so that one can work on this 

data, do mathematical operations on them, and 

retrieve them when necessary. 

 

2.3 Generation of the output data files 
 

The developed feature recognition 

software module generates the output data as 

two data files in the format required by the 

process planning modules of machining 

operations selection and set-up planning. The 

first file includes, for each feature, the feature 

index, its name, its diameter or width, the 

dimensional tolerance and the surface finish. 

The second file includes, for each feature, the 

index, the name, the type (internal or 

external), the subtype (primary or secondary), 

the indices of the neighboring features and 

their names, the diameters of the feature and 

those of the neighboring features, the 

geometric tolerances and the approach 

direction of the cutting tool (Left, Right or 

both). Further, in order to introduce the feature 

names in the output file, proper translation of 

the features names from those automatically 

assigned by CATIA has to be done in order to 

conform to the names used by the CAPP 

system (e.g. External Step, External Taper, 

Hole, Face, Slot, etc). Further explanations of  

functioning of the data extraction module that 

has been developed are given in Section 5. 

 

3. DEVELOPED NEURAL NETWORK 

BASED METHODOLOGY FOR 

SELECTION OF MACHINING 

OPERATIONS 
 

The key issues of the proposed ANN based 

methodology (Deb [32]) for machining 

operations selection in rotationally 

symmetrical parts will be discussed below. It 

takes in as input the data file containing 

information on feature types and their 

attributes from the feature recognition module 

and is capable of selecting all possible 

machining operations. 

 

3.1. Gathering of domain knowledge for 

formulating the thumb rules 
 

A set of thumb rules has been developed to 

represent the prior domain knowledge 

available on machining operations selection. 

These rules have been employed to 

prestructure the input layer of the neural 
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network to take advantage of the fact that 

prior domain knowledge can help reduce the 

complexity of learning in ANN. Further, they 

have been used to serve as guidelines for 

choosing the input patterns of training 

examples for the ANN. Domain knowledge 

for formulating the above rules was collated 

from machining handbooks and textbooks 

([33],[34],[35]) and expressed as: 

IF (Feature is of the type Feat) AND… 

(Dimension of the Feature is Dimi) AND… 

(Tolerance of the Feature is Tolj) AND… 

(Surface finish of the Feature is SFk), THEN 

(Operation sequence is OpSeql) 

The different features and ranges of 

dimensions, tolerances and surface finish are 

given in Table 1 and the machining operations 

sequences are in Table 2. An extract from the 

thumb rules to be learnt by the neural network 

model is shown in Figure 1. 

 

 

 
Feature type Dimensions (Diameter or Width) Tolerance Surface finish 

Hole  Up to 50mm (Length/Diameter ratio upto 10) 3-390μm 0.04-80μm 

External step Up to 50mm 4-390μm 0.08-80μm 

Groove Up to 50mm 40-250μm 2.5-20μm 

Face Up to 50mm 10-390μm 1.25-80μm 

Slot Up to 6mm 6-190μm 0.32-20μm 

External taper Up to 50mm 4-390μm 0.08-80μm 

External thread Up to 50mm 10-390μm 1.25-80μm 

 

 

 

Table 1  Ranges of dimension, tolerance and surface finish 

considered for different features 
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Operation Sequence 

 

Used for 

machini

ng 

Operation Sequence Used for machining 

Drill  

 

 

 

 

 

 

 

 

Hole 

Rough turn  

 

Face 
Drill-Counter Bore Rough turn-Semi finish turn 

Drill-Counter Bore-Rough Ream-

Semi finish Ream 

Rough turn-Semi finish turn-Finish 

turn 

Drill-Rough Bore Rough mill  

 

Slot 
Drill-Rough Bore-Semi finish bore Rough mill-Semi finish mill 

Drill-Rough Bore-Semi finish 

Bore-Finish Bore 

Rough mill-Semi finish mill-Finish 

mill 

Drill-Rough Bore-Semi finish 

Bore-Rough Grind-Semi finish 

Grind 

Rough Turn  

 

 

 

 

External taper 

Drill-Rough Bore-Semi finish 

Bore-Rough Grind-Finish Grind 

Rough Turn-Semi finish turn 

Drill-Rough Bore-Semi finish 

Bore-Grind-Hone 

Rough Turn-Semi finish Turn-Finish 

Turn 

Deep hole drill Rough Turn-Semi finish Turn-Rough 

Grind 

Rough Turn  

 

 

 

 

External 

step 

Rough Turn-Semi finish Turn-Rough 

Grind-Semi finish grind 

Rough Turn-Semi finish turn Rough Turn-Semi finish Turn-Rough 

Grind-Finish Grind 

Rough Turn-Semi finish Turn-

Finish Turn 

Rough Turn-Threading  

 

External thread Rough Turn-Semi finish Turn-

Rough Grind 

Rough Turn-Semi finish turn-

Threading 

Rough Turn-Semi finish Turn-

Rough Grind-Finish Grind 

Rough Turn-Semi finish Turn-Finish 

Turn-Threading 

Groove turning (one pass) Groove 

Groove turning (two passes) 

 

Table 2 Operation sequences considered for machining different features 

 

 

Figure 1.  Extract from the set of the thumb rules on selection of 

machining operations sequences for holes 

IF (Feature is a Hole) AND (Diameter of the Hole is 10-18 mm) AND (Tolerance of the 

Hole is 5-18 μm) AND (Surface finish of the Hole is 0.04-1.25 μm), THEN (Operation 

sequence is Drilling-Rough Boring-Semi finish Boring-Grinding-Honing). 

IF (Feature is a Hole) AND (Diameter of the Hole is 10-18 mm) AND (Tolerance of the 

Hole is 8-11 μm) AND (Surface finish of the Hole is 0.08-0.16 μm), THEN (Operation 

sequence is Drilling-Rough Boring-Semi finish Boring-Rough Grinding-Finish Grinding). 

IF (Feature is a Hole) AND (Diameter of the Hole is 10-18 mm) AND (Tolerance of the 

Hole is 11-18 μm) AND (Surface finish of the Hole is 0.16-0.63 μm), THEN (Operation 

sequence is Drilling-Rough Boring-Semi finish Boring-Rough Grinding-Semi Finish 

Grinding). 
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3.2. Topology of the ANN model and the 

format of representation of the input and 

output variables 

 

The topology of the proposed ANN model is 

shown in the Figure 2. The input variables 

consist of the feature type and its attributes 

obtained from the feature recognition module. 

The feature type is represented by integer 

values from 1 to 7 and their attributes 

represented by numerical values. The crisp 

values of these four variables constitute the 

external representation of input to the ANN. 

For example, for a hole of diameter 15 mm, 

tolerance 15 μm and surface finish 0.04 μm, it 

is the following input vector. 

 

Column number 1 2 3 4 

Value 1 15 15 0.04 

 

Next it is translated into the format of 

internal representation of input before 

presenting it to the ANN. In other words, the 

crisp values of feature attributes are 

categorised into sets corresponding to all 

possible different ranges of dimension, 

tolerance and surface finish, encountered in 

the „IF‟ part of the thumb rules. This is 

accomplished by simple classification rules. 

For example, let the diameter range 

encountered in the antecedent „IF‟ part of the 

rule be 10 to 18 mm, then the rule like the one 

shown below may be used for assigning 

diameter values to the corresponding diameter 

set: 

IF (feature is a hole) AND (its diameter lies 

between 10 and 18 mm), THEN (it is assigned 

to the diameter set for hole, 10-18 mm with a 

membership value of 1 or otherwise 0). 

In a similar manner, rules may be used for 

assigning tolerance and surface finish values 

to the corresponding tolerance and surface 

finish sets. 

The ANN input layer is designed such 

that one node is allocated for each of the 

feature types and the above sets of feature 

attributes. The number of nodes in the input 

i j k 

l 

Dimension Tolerance Surface finish 

Input layer 

neurons 

Output layer 

neurons 

External representation 

of the input  -  

Type of feature and 

crisp values of various 

attributes  

Hidden layer 

neurons 

Figure 2.   Topology of the proposed neural network model 

OpSeql 

 

Categorisation of the input 

Type of 

feature 

Tolj SFk 
Diai 
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layer is equal to one plus the number of all the 

possible different ranges of feature attributes 

encountered in the antecedent „IF‟ part of the 

rules. In the „IF‟ parts of the thumb rules, 

there are 38 diameter ranges, 168 tolerance 

ranges and 33 surface finish ranges. 

Therefore, the number of input layer nodes is 

240 (=1+38+168+33). So the machining 

features and their attributes are represented as 

a vector of 240 elements forming the input 

pattern to the ANN. For example, the input 

pattern for a hole of diameter 15 mm, 

tolerance 15 μm and surface finish 0.04 μm is 

represented by the following. 

 

Column 

number 

1 2 3 4 5 6 7 .. 64 65 

Value 1 0 0 0 1 0 0 0 1 0 

 

Column 

number 

66 67 .. 208 .. .. 240 

Value 0 0 0 1 0 .. 0 

 

In the above vector, the column number 1 

stands for the feature type, column numbers 

[2-7], [8-14], [15-19], [20-25], [26-27], [28-

34], [35-39] stand for the sets corresponding 

to the different ranges of diameter of the hole, 

external step, groove, face, slot, external taper 

and external thread respectively. Column 

numbers [40-93], [94-123], [124-135], [136-

153], [154-159], [160-189], [190-207] stand 

for the sets corresponding to the different 

ranges of tolerance of the above seven features 

respectively. Column numbers [208-217], 

[218-223], [224-225], [226-228], [229-231], 

[232-237], [238-240] stand for the sets 

corresponding to the different ranges of 

surface finish of the above seven features 

respectively. 

The output variables comprise of the 

feasible operation sequences. The output layer 

of the ANN is designed such that one node is 

allocated to each feasible operation sequence 

found in the „THEN‟ part of the rules. Each 

output layer node either assumes a nonzero 

value to indicate suitability of an operation 

sequence or zero otherwise. The number of 

nodes in the output layer is equal to the 

number of all the feasible machining operation 

sequences found in the consequent part of the 

rules. In the thumb rules developed, 33 

different operation sequences have been found 

in the consequent part of the rules. So the 

number of nodes in the output layer is 33. 

With those 33 neuron values, the feasible 

alternative machining operation sequences are 

represented as an output pattern vector. For 

machining the hole of diameter 15 mm, 

tolerance 15 μm and surface finish 0.04, the 

operation sequence is Drilling - Rough Boring 

- Semi finish Boring – Grinding - Honing, 

which is represented in the above format by 

the following vector: 

 

Column 

number 

1 2 3 4 5 6 

Value 0 0 0 0 0 0 

 

Column 

number 

 7 8 9 .. 33 

Value  0 0 1 0 0 

 

In the above vector, each of the column 

numbers [1-10], [11-16], [17-18], [19-21], 

[22-24], [25-30] and [31-33] stand for a 

feasible operations sequence for machining 

the different features namely hole, external 

step, groove, face, slot, external taper and 

external thread respectively. 

 

3.3 Training and validation of the ANN 

The standard back-propagation algorithm is 

used as the learning mechanism for the ANN. 

The training examples are prepared using the 

thumb rules. Table 3 shows a training dataset 

prepared using the rules of Figure 1. The input 

pattern of each training example, in its 

external representation format, has 4 columns 

representing the type of feature and its 

attributes, and the output pattern has 33 
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columns representing the various feasible 

machining operation sequences. The input 

patterns for the training examples have been 

chosen in such a way that they cover the entire 

range of the feature type, diameter, tolerance 

and surface finish found in the antecedent part 

„IF‟ of the rules given in Fig. 1. From Table 3, 

it can be found that for all the training 

examples, a dimension of 15 mm has been 

chosen as the whole diameter. By doing so, it 

is automatically assigned to the node for the 

set corresponding to diameter range 10-18 mm 

by using the classification rule; it is sufficient 

to represent all the possibilities in the range of 

10 to 18 mm. In a similar manner, the 

representative values for tolerance and surface 

finish have been chosen. Then by different 

combinations of these values of feature type, 

diameter, tolerance and surface finish, the 

training examples of Table 3 have been 

arrived at. A total of 318 training examples 

have been developed using all the thumb 

rules.

 

 

 

Table 3  Examples of input and output patterns for machining operations selection 

 

 
 

No 

Input pattern  

Output pattern 

(feasible machining operation sequences) 

 

1          ..          6          7         8           9         10          ..        33        

Feat 

type 

Dia Tol Surf 

finish 

1 2 3 4 

1 1 15 5 0.04 0 0 0 0 0 1 0 0 0 

2 1 15 5 0.063 0 0 0 0 0 1 0 0 0 

3 1 15 5 0.08 0 0 0 0 0 1 0 0 0 

4 1 15 5 0.16 0 0 0 0 0 1 0 0 0 

5 1 15 5 0.63 0 0 0 0 0 1 0 0 0 

6 1 15 8 0.04 0 0 0 0 0 1 0 0 0 

7 1 15 8 0.063 0 0 0 0 0 1 0 0 0 

8 1 15 8 0.08 0 0 0 0 1 1 0 0 0 

9 1 15 8 0.16 0 0 0 0 0 1 0 0 0 

10 1 15 8 0.63 0 0 0 0 0 1 0 0 0 

11 1 15 11 0.04 0 0 0 0 0 1 0 0 0 

12 1 15 11 0.063 0 0 0 0 0 1 0 0 0 

13 1 15 11 0.08 0 0 0 0 0 1 0 0 0 

14 1 15 11 0.16 0 0 0 1 0 1 0 0 0 

15 1 15 11 0.63 0 0 0 0 0 1 0 0 0 
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The commercial software package 

Neuframe V4 [36] is used to simulate the 

ANN. After a number of trials, the following  

optimum architecture and parameters of the 

ANN have been chosen: 

 

Number of hidden layers 1 

Number of hidden layer nodes 9 

Mode of training Pattern 

Learning rate 0.4 

Momentum rate 0.9 

 

The training has been performed until 

the error reached 0.5%. The number of 

iterations needed was 18471 and the time 

taken was about 16 minutes on a Pentium 4, 

1.7 GHz Personal Computer with 1 GB RAM. 

The performance of ANN has been tested on 

several input feature attributes, which have not 

been used as part of the training dataset. They 

indicated a good correlation with the 

Machining Data Handbook's 

recommendations.  

 

4. PROPOSED EXPERT SYSTEM BASED 

METHODOLOGY FOR SET-UP 

PLANNING 

 

The key issues of the proposed expert system 

based methodology (Deb [32]) for set-up 

planning will be discussed below. It is capable 

of generating set-up plans automatically by 

taking in as input the data files containing 

information about the features present in the 

part from the feature recognition module 

developed in Section 2, and the selected 

machining operations from the machining 

operations selection module developed in 

Section 3. It has been implemented by using 

CLIPS rule-based expert system shell [37].  

 

4.1 Development of the overall structure of 

the expert system 

 

The expert system is shown in Figure 3. It 

mainly consists of a database, a knowledge 

base and an inference engine, the details of 

which are given below.  

 

 

 

 

 

 

 

Figure 3.  Overall structure of the set-up planning module which is 

based on expert system 

Knowledge Base 

Rules for carrying out 

Set-up formation 

Rules for carrying out 

operation sequencing 

within the set-up  

Rules for carrying out 

Datum selection 

 

Inference Engine 

Database 

Functions and External 

Programs 

Facts about the features 

present in the part and 

information on machining 

operation sequences for 

producing each feature 
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4.2 Database 

 

The database comprises of data files 

containing information about features present 

in the part and machining operations as well 

as functions and external programs for 

performing calculations. The input 

information includes feature types, 

dimensions, geometric tolerance relationships 

between features, and TADs for each feature, 

obtained from the feature recognition module 

developed in Section 2. It also includes 

machining operations obtained from the 

process selection module developed in Section 

3. A format for representation of input data 

has been developed as shown in Figure 4(a), 

using a template which is a list of named 

fields called slots used to store values.  For 

example, the input data on a feature may be 

entered as follows: 

 

(feature (number 4) 

(name EXTERNAL_STEP) 

(type EXTERNAL)(subtype PRIMARY) 

(adjacent_features 3 5) 

(adjacent_features_names FACE 

EXTERNAL_TAPER)  

(step_diameter 49)(TAD right-left)) 

 

A format for representation of input data for 

machining operations has been developed 

using the template as shown in Fig. 4(b). For 

example, the input data for a machining 

operation may be entered as follows: 

(operation (number 401)(type turn) 

(machining_stage rough)(on-feature 4) 

(TAD right-left)  

(relation-with-feature 2 13)(tolerance 0.1 0.2)) 

 

The input data is saved as a data file with 

extension .clp. 

(deftemplate MAIN::feature 

(slot number (type INTEGER) (default ?NONE)) 

(slot name (type SYMBOL) (allowed-symbols CHAMFER EXTERNAL_STEP FACE GROOVE HOLE KEYWAY 

EXTERNAL_TAPER THREAD HOLE)) 

(slot type (type SYMBOL) (allowed-symbols EXTERNAL INTERNAL)) 

(slot subtype (type SYMBOL) (allowed-symbols PRIMARY SECONDARY)) 

(slot secondary_feature_to (type INTEGER) (default ?DERIVE)) 

(multislot adjacent_features (type INTEGER) (default ?DERIVE)) 

(multislot adjacent_features_names (type SYMBOL) (allowed-symbols CHAMFER EXTERNAL_STEP FACE 

GROOVE HOLE KEYWAY EXTERNAL_TAPER THREAD HOLE)) 

(multislot reference_features (type INTEGER) (default 0)) 

(slot step_diameter (type NUMBER)) 

(multislot adjacent_step_diameters (type NUMBER)) 

(slot hole_diameter (type NUMBER)) (slot hole_depth (type NUMBER)) 

(multislot adjacent_hole_diameters (type NUMBER)) 

(multislot adjacent_hole_depths (type NUMBER)) 

(slot TAD (type SYMBOL) (allowed-symbols left right right-left) (default ?NONE))) 

(a) Feature template 

(deftemplate operation  

(slot number (type INTEGER) (default ?NONE))  

(slot type (type SYMBOL) (default ?NONE)) 

(slot machining_stage (type SYMBOL) (allowed-symbols rough semifinish finish) (default rough)) 

(slot on-feature (type INTEGER) (default ?NONE)) 

(slot TAD (type SYMBOL) (allowed-symbols left right right-left) (default ?NONE)) 

(multislot relation-with-feature (type NUMBER) (default 0)) 

(multislot tolerance (type NUMBER) (default ?DERIVE))) 

(b) Operation template 

Figure 4.  Format of representation of the input data 
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(deftemplate MAIN::operation 

(slot number (type INTEGER) (default ?NONE)) 

(slot type (type SYMBOL)) 

(slot machining_stage (type SYMBOL) (allowed-symbols rough semifinish finish) (default rough)) 

(slot setup-cluster (type SYMBOL) (allowed-symbols left right)) 

(multislot preceding_opn (type INTEGER) (default 0))) 

(c) Modified Operation template 

Figure 4.  Format of representation of the input data (Contd.) 

 

4.3 Knowledge base 

 

The knowledge base consists of rules to solve 

the different set-up planning tasks. The 

inference engine is based on a forward 

chaining strategy. 

 

4.3.1 Knowledge base for solving set-up 

formation 

 

A set of rules are used for clustering the 

machining operations into two set-ups: right 

and left, after considering TADs of the 

features and the tolerance relationships 

between them. For example, if a machining 

operation on a feature is encountered having 

both TADs (left and right) and which has 

tolerance relationships with more than one 

feature each having a single TAD, then the 

operation is assigned to the same set-up as the 

operation on the other feature with which it 

has the tightest tolerance. The example of a 

rule is shown in Figure 5. It states that if there 

exists an “operation” about machining a 

feature A having both TADs and tolerance 

relationship with more than one feature with a 

single TAD, and if the feature B with which it 

has the tightest tolerance has the TAD “left”, 

then operation on A is also assigned the TAD 

“left” and the same set-up as operation on B. 

The above rule calls three functions: “feature-

with-tightest-tolerance” that returns the 

feature identifier having the tightest tolerance 

relationship with A, “update-relation-with-

feature” and “update-tolerance” that are used 

to update the “relation-with-feature” and the 

“tolerance” slots respectively by removing the 

tolerance relationships between features that 

have been already satisfied. 

 

4.3.2 Knowledge base for solving operation 

sequencing 

 

The decision on determining sequences of 

operations is based on precedence constraints 

between features and manufacturing logic in 

ordering the operations. Rules have been 

developed based on heuristic and expert 

knowledge from machining textbooks and 

handbooks. For example, there may be a 

constraint requiring that subsequent features 

should not destroy the properties of features 

machined previously, e.g. machining of a 

groove prior to the adjacent thread (Figure 6).  

Figure 7 shows the rule for the above 

example. It states that, if there exists a feature 

A of the type thread having one of the 

adjacent features B of the type groove, then 

the precedence relationship between the 

machining operations on A and B will be first 

machining of B, followed by machining of A. 

For sequencing of operations, two 

types of manufacturing logic for ordering the 

operations are used: machining of external 

surfaces, followed by internal surfaces, and 

rough machining, followed by semi-finish 

machining, followed by finish machining. 

Another priority for operations sequencing is 

that for a certain set-up, the machining of the 

features is done starting from one end, while 

respecting the precedence constraints. It helps 
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to reduce the tool travel distances and idle tool 

motion. The information about set-up cluster 

and preceding operations are incorporated as 

new slots into the “operation” facts template, 

which is redefined as shown in Figure 4(c). 

Next the operations sequencing is 

accomplished using a set of rules. First two 

multi-field variables are defined namely, the 

set-up clusters from the left and the right. 

Then all the “operation” facts are scanned and 

a set of rules is used for assigning each 

operation to one of the two set-up clusters in 

the sequential order in which they must be 

performed. For example, a machining 

operation can be assigned to a set-up cluster 

only if all of its preceding operations have 

been assigned. Figure 8 gives some examples 

of rules. First, two global variables have been 

defined, namely “sequence-left-cluster” 

indicating the set-up cluster from left and 

“opn-left-cluster” indicating an operation 

belonging to it. The sample rule 1 states that if 

an operation n1 meant for rough-machining of 

an external step and belonging to the left set-

up cluster is encountered, and if it has one 

preceding operation n2 belonging to the left 

set-up cluster and has been already assigned to 

the “sequence-left-cluster” variable, then 

operation n1 may be assigned to the 

“sequence-left-cluster” variable. The sample 

rule 2 is similar to sample rule 1 except that it 

is meant for semi-finish machining of an 

external step. The salience or priority in 

execution of rule 1 is higher than that of rule 

2, signifying that if conditions for firing both 

the rules are satisfied, then the actions of rule1 

are executed first followed by that of rule 2, 

which causes the rough machining operation 

to be assigned to the operations sequence 

ahead of the semi-finish machining operation.

 
(defrule sample_rule_setup_formation 

   ?f1 <- (operation (TAD right-left)) 

 (test (>= (length$ (fact-slot-value ?f1 tolerance)) 2)) 

 (operation (TAD left) (on-feature =(feature-with-tightest-tolerance ?f1))) 

=> (modify ?f1 (TAD left) (relation-with-feature =(update-relation-with-feature ?f1)) 

(tolerance =(update-tolerance ?f1)))) 

Figure 5.  Typical rule for set-up formation 

 

 

 

 

 

 

 

 

 

       

       B→A            

Figure 6.  Example of a feature precedence relation 
 

(defrule sample_rule1 

 (feature (number ?A) (name THREAD) (adjacent_features $? ?B $?)  

               (adjacent_features_names $? GROOVE $?)) 

 (assert (precedence ?B ?A))) 

 

  

Figure 7.  Typical rules for deriving machining operation precedences 

B A 
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 (defglobal ?*sequence-left-cluster* = 0 

    ?*opn-left-cluster* = 0 ) 

(defrule sample-rule-1 

 (declare (salience 99)) 

 ?f1 <- (opn (number ?n1) (machining_stage rough) (setup-cluster left) (preceding_opn ?n2)) 

 (operation (number ?n1)  (on-feature ?N1)) (feature (number ?N1) (name EXTERNAL_STEP)) 

 (test (not (= ?n2 0))) 

 (opn (number ?n2)  (machining_stage rough) (setup-cluster left)) 

=> (bind ?*opn-left-cluster* (fact-slot-value ?f1 number)) 

 (if (subsetp (create$ ?n2) (create$ ?*sequence-left-cluster*)) 

     then  (bind ?*sequence-left-cluster* (create$ ?*sequence-left-cluster* ?*opn-left-cluster*))))  

(defrule sample-rule-2 

 (declare (salience 79)) 

 ?f1 <- (opn (number ?n1) (machining_stage semifinish) (setup-cluster left) (preceding_opn ?n2)) 

 (operation (number ?n1)  (on-feature ?N1)) (feature (number ?N1) (name EXTERNAL_STEP)) 

 (test (not (= ?n2 0))) 

 (opn (number ?n2)  (machining_stage semifinish) (setup-cluster left)) 

=> (bind ?*opn-left-cluster* (fact-slot-value ?f1 number)) 

 (if (subsetp (create$ ?n2) (create$ ?*sequence-left-cluster*)) 

     then  (bind ?*sequence-left-cluster* (create$ ?*sequence-left-cluster* ?*opn-left-cluster*)))) 

 

Figure 8.  Typical rules for operation sequencing 

4.3.3 Knowledge base for solving datum 

selection 

 

The decision on selecting datum surfaces is 

based according to the following: 

- select as datum the part surface, having 

orientation different from surfaces being 

machined and with tightest tolerance with one 

of the surfaces obtained in the set-up  

- when no tolerance relationship exists, select 

as datum part surface having orientation 

different from surfaces being machined and 

largest diameter/longest cylindrical surface. 

The above principles for datum selection have 

been implemented using a set of rules to 

determine the locating and clamping surfaces. 

Figure 9 gives an example of a rule. It states 

that if feature C encountered in the facts list is 

of type external step and if TAD for 

machining C is left and if C has tightest 

geometric tolerance relationship with feature 

X of type external step and if TAD for 

machining X is right, then external cylindrical 

surface of X may be chosen as clamping 

surface and vertical surface of X may be 

chosen as locating surface for the left set-up. 
 

(defrule sample-rule-1 

(feature (number ?c) (name EXTERNAL_STEP)) 

 ?f1 <- (operation (on-feature ?c) (TAD left)) 

 (test (>= (length$ (fact-slot-value ?f1 tolerance)) 2)) 

 (operation (on-feature =(feature-with-tightest-tolerance ?f1)) (TAD right)) 

=> (assert (datums_selected (setup left) (clamping_surface =(feature-with-tightest-tolerance ?f1)) (locating_surface 

=(feature-with-tightest-tolerance ?f1))))) 

(defrule MAIN::sample-rule-2 

 (not (operation (TAD left) (relation-with-feature ~0))) 

 (feature (number ?a) (type EXTERNAL) (name EXTERNAL_STEP)) 

 (feature-with-largest-dia (number ?a)) (operation (on-feature ?a) (TAD right)) 

 (assert (datums_selected (setup left) (clamping_surface ?a) (locating_surface ?a)))) 

Figure 9.  Typical rules for datum selection 
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5. ILLUSTRATIVE EXAMPLE 

 

A shaft shown in Figure 10 is used to 

demonstrate the application of the proposed 

methodologies. The part contains the 

following 30 machining features: numbers 1, 3 

and 14 are of the type face, features 2, 4, 6, 7, 

8, 9 and 13 are of the type external step, 

feature 5 is of the type external taper, features 

10 and 12 are of the type groove, feature 11 is 

of the type external thread, features 15, 16, 17 

and 18 are of the type hole, feature 19  (8 in 

number) is of the type hole, and feature 20 (4 

in number) is of the type slot. The TAD for 

machining features 1, 2, 3, 15 and 16 is left, 

the TAD for machining features 5, 6, 7, 8, 9, 

10, 11, 12, 13, 14, 18 and 20 is right, and the 

TAD for machining features 4, 17 and 19 may 

be either left or right. Feature 4 has geometric 

tolerance relationships (shown in Figure 11) 

of 3µm, 5µm and 4µm respectively with 

features 2, 7 and 13. The part has been 

modeled using the commercial CAD software, 

CATIA, and Figure 11 shows the feature tree 

of the part in CATIA. The information about 

the different features present in the part has to 

be extracted from the CAD datafiles of the 

part. The results of the output when feature 

recognition program is executed show that all 

the elements have been recognized. For 

example, the sketch name and coordinates that 

are used to create the cylindrical feature Pad.1 

in Figure 11, has been extracted by the feature 

recognizer and are shown in Figure 12(a). 

After comparing the results obtained from the 

feature recognizer with the feature tree of the 

part shown in Figure 11, it was found that the 

software was able to recognize all the sketches 

as well as all the data needed by the CAPP 

system. Figure 12(b) shows an extract of the 

output from the feature recognizer illustrating 

the features and the values of their attributes. 

The following explains how the feature 

recognition of a cylindrical surface has been 

done. By reading the contents of the shapes 

collection, the software detects the cylindrical 

surface and gets into the sublist of attributes to 

access them. The end points of the feature are 

obtained and thus its length. Next the parent of 

the feature is located and thus the sketch on 

which it is based. Once the name of the sketch 

is found, it is possible to get into the Sketches 

collection and to retrieve its coordinates in 

order to locate the feature in the space, thus 

the neighbouring features may be established. 

Also, it is possible to extract the constraints 

linked to the sketch profile so that the radius 

can be extracted. In Fig. 12(b), for the 

cylindrical surface 1 (Pad.1), the position of 

the starting point from the origin (2 mm) and 

that of the end point (0 mm) have been 

extracted, thus the length of the feature (2 

mm) is obtained. The radius (15mm) is also 

extracted. An extract from the two output files 

for the feature 12 of the type groove is given 

below:  

 

File 1: 

(feature (number 12) 

(name GROOVE) (feature_diameter 14) 

(feature_max_toler 0,05)  

(feature_min_toler 0)) 

 

 

File 2: 

(feature (number 12) (name GROOVE)  

(type EXTERNAL) (subtype PRIMARY) 

(adjacent_features 13 11) 

(adjacent_features_names EXTERNAL_STEP 

THREAD) (TAD Right))  
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Figure 10.   A Rotationally Symmetrical Part 
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Figure 11. Feature Tree of the Part in CATIA with details of Pad.1  

 

 

(a) 

 

(b) 

Figure 12. Extract from Results of the Output from the Feature Recognizer 

Next the machining operation sequences have 

to be determined. After presenting the type, 

dimension, tolerance and surface finish of 

each feature to the input layer of ANN, all the 

possible machining operations for producing 

each feature are generated automatically as 

shown in Table 4. The above results exhibit a 

good correlation with the Machining Data 

Handbook's recommendations. They will then 

form the input for the set-up planning module. 

It took less than 5 seconds on a Pentium 4, 1.7 

GHz PC 1 GB RAM to generate the above.  
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Table 4 Machining operations generated by the neural network for producing 

              different features of the part shown in Fig. 10 (Alt. stands for Alternative) 

 
Feature identifier Feature type Operation sequences generated by the neural network 

1,3,14 Face Rough turn→ Semi finish turn→ Finish turn 

2,4, 6,7,8,9,13 External step Alt. 1: Rough Turn→ Semi finish Turn→ Finish Turn 

Alt. 2: Rough Turn→ Semi finish Turn→ Rough Grind 

5 External taper Alt. 1: Rough Turn→ Semi finish Turn→ Finish Turn 

Alt. 2: Rough Turn→ Semi finish Turn→ Rough Grind 

10,12 Groove Groove turning (two passes) 

11 External thread Rough Turn→ Semi finish Turn→ Finish Turn→ Threading 

15,16,17,18 Hole Alt. 1: Drill→ Counterbore→ Rough Ream→ Semi finish 

Ream; Alt. 2: Drill→ Rough Bore→ Semi finish Bore→ 

Finish Bore; Alt. 3: Deep hole drill 

19 Holes X 8 nos. Alt. 1: Drill-Rough Bore-Semi finish Bore-Finish Bore ;  

Alt. 2: Deep hole drill 

20 Slot X 4 nos. Rough mill-Semi finish mill 

 

 

Next the set-up plan for machining the 

part shown in Figure 10 has to be determined. 

The machining operations selected are shown 

in Table 5. The above information is 

represented in the input data format of CLIPS 

following the syntax given in the template 

definition of “features” and “operations”, and 

is stored in data files with the extension .clp. 

These data files are then loaded into the 

CLIPS environment and the expert system 

program is executed. Table 6 summarises the 

results of the output generated that includes 

the group of operations in each set-up, the 

operations sequence and the method of 

locating and clamping the part in each set-up. 

It took a little over 2 minutes on a Pentium 4, 

1.7 GHz PC with 1GB RAM to generate the 

above output. The results indicate that the 

machining of rotationally symmetrical 

features of the part on CNC lathe has to be 

carried out in two set-ups. The machining 

operations on 1, 2, 3, 15 and 16 have been  

 

 

assigned to the left set-up since their TAD is 

left. Similarly the machining operations on 5,  

6, 7, 8, 9, 10, 11, 12, 13, 14 and 18 have been 

assigned to the right set-up since their TAD is 

right. The machining operations on 4 have 

been assigned to the left set-up because 4 has 

a tighter geometric tolerance relationship with 

2 as compared to that with 7 and 13. The 

machining of features 19 and 20 has to be 

carried out in two different set-ups on the 

CNC milling machine. Also in Table 6, the 

different machining operations have been 

listed in the sequence in which they are to be 

performed in each set-up after considering the 

various precedence constraints as well as the 

manufacturing logic in sequencing as 

discussed in Section 4.3.2. Further, the 

features to be used for locating and clamping 

the part for each set-up have been identified 

after considering the heuristic principles 

discussed in Section 4.3.3.  
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Table 5  Machining operation sequences for producing different features of 

the part shown in Figure 10 

 
Feature identifier Feature type Operation description Operation identifier 

1 Face Rough turn 

Semi finish turn 

Finish turn 

101 

102 

103 

2 External step Rough Turn 

Semi finish Turn 

Finish Turn 

201 

202 

203 

3 Face Rough turn 

Semi finish turn 

Finish turn 

301 

302 

303 

4 External step Rough Turn 

Semi finish Turn 

Finish Turn 

401 

402 

403 

5 External taper Rough Turn 

Semi finish Turn 

Finish Turn 

501 

502 

503 

6 External step Rough Turn 

Semi finish Turn 

Finish Turn 

601 

602 

603 

7 External step Rough Turn 

Semi finish Turn 

Finish Turn 

701 

702 

703 

8 External step Rough Turn 

Semi finish Turn 

Finish Turn 

801 

802 

803 

9 External step Rough Turn 

Semi finish Turn 

Finish Turn 

901 

902 

903 

10 Groove Groove turning (two passes) 10 

11 External thread Rough Turn 

Semi finish Turn 

Finish Turn 

Threading 

1101 

1102 

1103 

11 

12 Groove Groove turning (two passes) 12 

13 External step Rough Turn 

Semi finish Turn 

Finish Turn 

1301 

1302 

1303 
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Feature identifier Feature type Operation description Operation identifier 

14  Face Rough turn  

Semi finish turn 

Finish turn 

1401 

1402 

1403 

15 Hole Drill 

Rough Bore 

Semi finish Bore 

Finish Bore 

1501 

15001 

15002 

15003 

16 Hole Drill 

Rough Bore 

Semi finish Bore 

Finish Bore 

1601 

16001 

16002 

16003 

17 Hole Drill 

Rough Bore 

Semi finish Bore 

Finish Bore 

1701 

17001 

17002 

17003 

18 Hole Drill 

Rough Bore 

Semi finish Bore 

Finish Bore 

1801 

18001 

18002 

18003 

19 Hole Drill 

Rough Bore 

Semi finish Bore 

Finish Bore 

1901 

19001 

19002 

19003 

20 Slot Rough mill 

Semi finish mill 

2001 

2002 

 

Table 6  Set-up plan recommended by the expert system based set-up planner 
 Machine tool Set-up Sequential order of machining operations Datum features 

Clamping Locating 

 

 

 

 

CNC lathe 

Left 101 201 401 301 102 202 402 302 103 203 403 303 17 

1601 16001 1501 15001 16002 15002 16003 15003 

13 14 

Right 1401 1301 11101 901 701 601 801 501 1402 1302 11102 

902 702 602 802 502 1403 1303 11103 903 703 603 803 

503 12 10 11 1801 18001  18002 18003 

4 3 

CNC milling machine - 1901 19001 19002 19003 13 14 

CNC milling machine - 2001 2002 4 3 
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6. DISCUSSION

In this article, we have presented an efficient 

method of machining operations selection 

using ANNs, which is much easier to train and 

use than those which had been proposed 

earlier.  The set-up planning is done 

exclusively by an expert system which is 

modular in nature and is convenient to modify 

and to use.  Both these modules have been 

integrated with an automated data extraction 

system that obtains the necessary data from 

the CAD database and provides them to the 

process planning modules in a fully automated 

manner.  These three topics are briefly 

discussed below. 

 In the approach proposed here, the 

machining operations selection is done by an 

ANN.  Unlike the previous publications that 

have used neural networks, the ANN approach 

proposed in this paper recommends all 

possible alternative operation sequences for 

machining a certain feature.  This provides an 

opportunity for choosing an optimal sequence; 

for example, to minimize the cost.  The ANN 

model in this paper has been prestructured 

with prior domain knowledge in the form of 

thumb rules, with each input layer node 

representing a range of input variables found 

in the 'IF' part of the rules and each output 

layer node a possible machining operation  

sequence found in the 'THEN' part of the 

rules.  In addition, a more systematic method 

of choosing training examples has been 

proposed here.  In neural network approaches 

by previous researchers, training of the 

network could become an arduous task since 

there were no guidelines for choosing of input 

patterns of the training examples, and a lot of 

trial and error was involved.  In the present 

approach, the thumb rules developed for 

selection of machining operations are used to 

serve as guidelines during the preparation of 

training examples.  The input patterns have to 

be chosen in such a way that they activate one 

or more of those thumb rules.  This approach 

results in a shorter training time of the neural 

network for a certain job and of course, this 

has a favorable effect on the practical utility of 

the method.  Compared to the approaches such 

as decision trees, the method proposed here is 

more flexible because the modification of the 

knowledge base can be effectuated by merely 

retraining it. 

As regards set-up planning, most of the 

previous expert system approaches had been 

developed for prismatic parts. Furthermore, in 

most of the previous approaches, a mixture of 

expert systems and some algorithmic approach 

had been adopted that is inflexible; to modify 

it, it might require rewriting of the original 

program, which could be tedious and time-

consuming. In the present paper, a pure expert 

system approach is adopted to solve different 

set-up planning problems for rotationally 

symmetrical parts. Its modular nature gives 

added flexibility to the proposed approach. 

Any modification of the knowledge base can 

be done by modifying the rules that is less 

time consuming than modifying the original 

program with algorithmic approaches. 

However, care must be exercised to ensure 

that the new rules are consistent with the 

existing rules. Another of its important 

advantages is the fast computation time, which 

reduces the process planning time and hence 

the cost. 

 The data needed by the two process 

planning modules of machining operations 

selection and set-up planning is automatically 

extracted from the CAD database using the 

feature recognition module that has been 

presented in this paper.  The necessary data 

are extracted and are stored in a common 

database and are subsequently used for 

process planning. 

 

7. SCOPE FOR FURTHER WORK 

 

The ANN methodology for machining 

operations selection may be expanded to 

include other features and it may be adapted to 
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mill-turn and prismatic parts. The expert 

system based set-up planning methodology 

may be expanded by considering other 

constraints, e.g. fixturing. There is scope for 

optimization using AI approaches such as 

genetic algorithm. A direction for future 

research could be modification of the set-up 

planning methodology by considering 

normalized values of relative tolerances. 

Further work needs to be done on integration 

of the proposed modules with other modules 

of the CAPP system such as modules for 

machine tool and cutting tool selection, 

selection of cutting parameters, etc. 

 

8. CONCLUSIONS 

 
In this paper, a review of previous research 

has been given for automating the tasks of 

machining operations selection and set-up 

planning in generative CAPP systems. A 

methodology has been developed for 

automatic feature recognition and extraction 

of data from the CAD file of the part modeled 

by the commercial CAD software, CATIA. It 

is capable of extracting the data and storing 

them in datafiles in the format that is directly 

accessible by the process planning modules of 

machining operations selection and set-up 

planning. For machining operations selection 

of rotationally symmetrical parts, a novel 

back-propagation ANN methodology has been 

developed by prestructuring it with prior 

domain knowledge. It takes in attributes of 

each feature obtained from the feature 

recognition module and automatically selects 

all possible alternative machining operations. 

A comparison with approaches developed by 

previous researchers has been given. The 

advantages of the proposed approach over 

previously developed back-propagation ANN 

approaches are manifold. It simplifies the 

preparation of training examples and helps to 

better ensure that the entire problem domain is 

represented. It takes shorter time for 

preparation of the training examples and the 

computation time has been found to be 

reasonably fast. The modification of its 

knowledge base can be accomplished quickly 

by simply retraining it. Further, an expert 

system based set-up planning methodology 

has been developed for automating the tasks 

of set-up formation, operation sequencing and 

datum selection for rotationally symmetrical 

parts. It has been implemented by using the 

CLIPS rule-based expert system shell. It takes 

in information about different features present 

in the part obtained from the feature 

recognition module as well as information 

about machining operations obtained from the 

process selection module, and is capable of 

generating set-up plans automatically. The 

proposed approach is more flexible than the 

previously developed approaches based on 

combined expert system and algorithmic 

approaches particularly when it comes to 

modification of its knowledge bases. The 

example of a rotationally symmetrical 

workpiece has been analyzed using the 

proposed integrated methodology to 

demonstrate its potential for application in the 

real manufacturing environment. By this 

methodology, the feature recognition and 

extraction of data from the part model in CAD 

system and the process planning tasks of 

machining operations selection and the set-up 

planning of rotationally symmetrical 

machined parts can be accomplished 

automatically by investing a very limited 

amount of time, making them attractive and 

cost effective for industrial applications. 
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