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This chapter provides an introduction to intelligent machining. The various com-
putational techniques to achieve the goal of intelligent machining are described. 
First, a description of neural networks and fuzzy set theory is presented. These are 
soft computing techniques. Afterwards the application of the finite element 
method to the machining processes is briefly mentioned. Finally, the optimization 
of machining processes is described. 

12.1 Intelligent Machining 

Machining processes are inherently complex, nonlinear, multivariate and often 
subjected to various unknown external disturbances. A machining process is usually 
performed by a skilled operator, who uses his decision-making capabilities based on 
the intuition and rules of thumb gained from experience. To develop a fully auto-
mated machining system with intelligent functions like those of expert operators is  
a very difficult problem. A fully automated system requires the capabilities for 
automatic control, monitoring and diagnostics of the machining processes. Such  
a system can be compared with a human operator. A number of sensors provide 
feedback to the system, in a way the sensory organs provide feedback to a human. 
Like the brain of a human, an automated system is equipped with a computer for 
processing the feedback information from sensors in real time and taking the appro-
priate decision to ensure optimal operating conditions. For the decision making, an 
automated system must have a model of the machining process. The model can be 
based on the physics of the process. The physics of the process is understood by  
a researcher and is converted in mathematical form, usually in the form of differen-
tial equations. The differential equations of the process are solved by a suitable 
technique such as the finite element method (FEM). In many instances, the physics 
of the process is not known properly. However, if there is a sufficient amount of 
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data describing the behaviour of the process, a model can be developed based on the 
data, which is called modelling based on the data. 

Modelling based on the physics is accomplished by the computational tools that 
may be called hard computing methods. On the other hand, modelling based on 
the data is accomplished by soft computing tools such as neural networks and 
fuzzy sets. Soft computing tools try to generate approximate solutions of the prob-
lem in the presence of uncertain or imprecise physics and/or the process variables. 
Soft computing differs from conventional (hard) computing in that, unlike hard 
computing, it is tolerant of imprecision, uncertainty, partial truth and approxima-
tion. As for modelling, the process optimization can also be carried out by using 
either conventional (hard) optimization algorithm or heuristic soft algorithm such 
as genetic algorithms (GAs). Similarly, the control of the process may be based on 
either conventional (hard) control techniques or soft control techniques such as 
fuzzy logic. A hybrid of hard and soft techniques may also be used. 

Human beings themselves adapt to changes in the environment. In the same 
way, an adaptive control mechanism is an integral part of an intelligent machine. 
An adaptively controlled machine is able to adapt to the dynamic changes of the 
system caused by the variability of machining process due to changes in the cut-
ting conditions such as the hardness of the work material, tool wear, deflection of 
the tool and the workpiece, and so on. The following are the main objectives of an 
adaptive control system:  

• to adjust the machining parameters such as cutting speeds and feed rates 
and/or the motion of the cutter to optimize the machining process by 
maximizing some performance criteria based on the cost or the production; 

• to satisfy various constraints against variations due to external factors and 
respond to such variations in the process in real time; 

• to automatically improve the performance of the machining process 
through its learning capability.  

An adaptive control system that can fulfil the third objective may be said to pos-
sess intelligence as one of the meanings of the word ‘intelligence’ is the capacity 
to acquire and apply knowledge. 

For monitoring of machining processes and fault diagnostics, the intelligent 
machining system must be equipped with the knowledge of how to recognise 
failures, how to localize them and how to relate the faults and their effects to the 
operating state. Moreover, state classification and process intervention have to be 
completed in real time to avoid additional damage when a deviant state has been 
detected. There are various signals (force, torque, temperature, mechanical vibra-
tion, acoustic emission, etc.) which correlate with the condition of the machining 
process. The control and monitoring algorithms should be based on the simultane-
ous measurement and processing of different signals. 

Figure 12.1 shows a scheme of an intelligent machining centre. The intelligent 
machining centre functions as follows. The design model of the component to be 
machined is provided to the computer. Using suitable software, the tool path is 
generated and the spindle speed and feed rate are decided. This information is fed 
to the machine controller, which provides signals to the drive motors. The adap-
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tive controller adjusts the feed rate, spindle speed and tool path, according to 
changes in the cutting conditions. The four different types of adaptive control 
system are: adaptive control optimization (ACO), adaptive control constraint 
(ACC), geometric adaptive control (GAC) and vibration adaptive control (VAC). 
The purpose of ACO is to search for the optimum values of feed rate and spindle 
speed that maximize some performance criteria such as minimum cost of machin-
ing or maximum production rate. ACC selects the feasible solution of the feed rate 
and spindle speed to satisfy the constraints in manufacturing by an algorithm that 
is rather simpler than ACO. GAC tries to obtain a highly accurate surface finish by 
adjusting the tool offset against the deflection of tools and work material caused 
by temperature rise and/or cutting force. The function of VAC is to avoid the vi-
bration or chatter of tools, mainly due to regenerative oscillation, by adjusting the 
spindle speed or the resonance frequency of machine tools. Feedback about the 
process can be obtained by means of a number of different kinds of sensors, al-
though the figure shows feedback only in the form of temperature, vibration and 
force signals. 

An intelligent machining system should also possess a memory, like an expert 
operator. The knowledge available in machining data handbooks and that acquired 
from experience can be stored in the memory of the intelligent machining system. 
The system should have the capability to acquire data efficiently, store useful data 
by filtering out the noise and retrieve it efficiently. At the same time, it is desirable 
that the system is able to communicate with humans in some way, such that its 
decisions and actions become transparent to the users concerned. This implies that 
the acquired or available knowledge can be stored in the form of an expert system. 

In this chapter, the computational techniques and optimization methods that can 
be used to develop intelligent machining systems are briefly described. Sec-
tion 12.2 describes the application of neural networks in modelling the machining 
processes. Section 12.3 describes fuzzy-set-based modelling. Section 12.4 de-
scribes the hybrid system composed of neural networks and fuzzy set theory, ei-
ther in the form of the mixture or the compound. Section 12.5 briefly discusses the 

 
Figure 12.1. An intelligent horizontal machining centre 
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application of FEM to the study of machining processes. Section 12.6 describes 
the optimization techniques useful for optimizing the machining processes. Both 
conventional (hard) and non-conventional (soft) techniques are touched upon. 
Finally, Section 12.7 discusses the challenges to be met for developing a truly 
intelligent machine tool. 

12.2 Neural Network Modelling  

It is well known that computers can perform a number of jobs at a much faster rate 
compared to human beings. However, there are many other tasks which a human 
being can perform in a faster and better way. One such task is recognising a face. 
A human being can recogonise a face quickly, because the information about vari-
ous attributes of the face is processed parallely in the brain. The brain contains a 
neural network consisting of a number of interconnected information-processing 
units called neurons. A schematic drawing of a neural network showing only two 
neurons and their connections is shown in Figure 12.2. A neuron consists of a cell 
body called the soma, a number of fibres called dendrites and a single long fibre 
called the axon. The dendrites receive the electrical signals from the axons of 
other neurons. The axon transmits the electrical signal from one neuron to other 
neurons via the dendrites. The connection between the axon and the dendrite is 
called a synapse. At the synapses, the electrical signals are modulated by different 
amounts. The synapses release chemical substances that cause changes in the 
electrical potential of the soma. When the potential reaches its threshold, an elec-
trical pulse called the action potential is sent down through the axon. 

Artificial neural networks are a humble attempt to model biological neural net-
works. Figure 12.3 shows a schematic diagram of an artificial neuron receiving 
signals (xi, i = 1 to n) from a number of neurons and emitting signals (oi, I = 1 to k) 
to be transmitted to a number of neurons. In an artificial neural network, the sig-
nals are in the form of numerical values rather than electricity. The action of the 
synapses is simulated by multiplying each input value by a suitable weight w.  

 
Figure 12.2. A schematic drawing of a biological neural network 
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A biological neuron fires an output signal only when the total strength of the input 
signals exceeds a certain threshold. This phenomenon is modelled in an artificial 
neuron by calculating the weighted sum of the inputs to represent the total strength 
of the input signals, and applying a suitable activation (threshold) function to the 
sum to determine its output. 

Neural networks can be classified based on their topology (architecture) and the 
method of training. The most common neural network architectures are: (1) feed-
forward neural networks, (2) feedback neural networks, and (3) self-organizing 
neural networks. Feedforward neural networks are the most popular and widely 
used ones. There are two types of neural networks in this category: multi-layer 
perceptron (MLP) neural network and radial basis function (RBF) neural net-
works. Figure 12.4 shows a feedforward architecture of a typical neural network 
consisting of three layers. Each layer contains a number of neurons, depicted by 
circles in the figure. Each layer has full interconnection to the next layer but no 
connection within a layer. The first layer of the network is known as the input 
layer whose neurons take on the values corresponding to different variables repre-
senting the input pattern. The second layer is known as a hidden layer because its 
outputs are used internally and not used as the final output of the network. In MLP 
neural network, there may be more than two hidden layers. In RBF neural net-
work, only one hidden layer is present. In Figure 12.4, only one hidden layer is 
shown. The final layer of network is known as the output layer. The values of the 
neurons of the output layer constitute the response of the neural network to an 
input pattern presented at the input layer. In MLP neural networks, the number of 
hidden layer in a network is an important design parameter. In both MLP and RBF 
neural networks the number of neurons in a hidden layer has to be chosen judi-
ciously. The general rule is to design a neural network model which uses fewer 
parameters (weights and biases). 

In recurrent or feedback neural networks, the outputs of some neurons are also 
fed back to some neurons in layers before them. Thus, signals can flow in both 
forward and backward directions, as shown in Figure 12.5. A recurrent network is 
said to have a dynamic memory. The output of such networks at a given instant 
reflects the current input as well as the previous inputs and outputs. An example of  

 
Figure 12.3. A typical artificial neuron 
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Figure 12.4. A typical feedforward neural network 

the recurrent networks is the Hopfield network. Hopfield networks are typically 
used for classification problems with binary input pattern vectors. Another type of 
neural network is the self-organizing neural network that consists of neurons ar-
ranged in the form of a low-dimensional grid. Each input is connected to all the 

 
Figure 12.5. A typical recurrent neural netwok 
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output neurons. This type of network is useful in classifying high-dimensional 
data by constructing its own topology. 

Neural networks need to be trained so that they produce proper response to a 
given input vector. The training process is an iterative process that adjusts the 
parameters (weights and biases) of the network until the network is able to pro-
duce the desired output from a set of inputs. The process of training the network 
can be broadly classified into supervised and unsupervised learning. A number of 
training algorithms based on the supervised learning are available of which the 
most common is the backpropagation algorithm. The backpropagation algorithm 
supplies the neural network with a sequence of input patterns and desired output 
(target) patterns, which together constitute the training exemplars. As an input 
pattern is presented to the neural network, the output response is calculated on a 
forward pass through the network. In Figure 12.4, the output of each neuron j in 
the hidden layer is computed according to the model of Figure 12.3. Given the 
input signal xi at the input neurons, the output oj is given by 

 = ∑j ji io f ( w x ) ,  (12.1) 

where wji is the weight associated with the jth neuron of the hidden layer and the 
ith neuron of the input layer. The function f is called the activation function. Some 
commonly used activation functions are: 

 1
1 ctLog sigmoid: o f ( t ) , wherec is a constant,

e−= =
+

  (12.2) 

 Tan hyperbolic: o f ( t ) tanh(c t/2), where c is a constant,= =   (12.3) 

 Identity: f (t )=t.   (12.4) 

The output of each neuron in the output layer is computed in a similar manner. 
The final output is compared to the desired output, and error terms are calculated 
for each output neuron. A function of the errors of the neurons in the output layer 
is then propagated backwards through the network to each layer, and weights of 
each of the interconnected neurons are adjusted in such a way that the error be-
tween the desired output and the actual output is reduced. Any optimization 
method can be used to find out the weights that minimize the error. Early back-
propagation algorithms were based on the steepest-descent algorithm, according to 
which the maximum decrease in the function is in a direction opposite to the direc-
tion of the gradient of the function. Another commonly used backpropagation 
algorithm is based on the Levenberg–Marquardt method, which is a combination 
of the steepest-descent method and the quasi-Newton method. At initial iterations, 
Cauchy’s method is followed and the algorithm gradually moves towards the 
quasi-Newton method. 

In back propagation algorithms using the steepest-descent or Levenberg–
Marquardt method, the weights may correspond to a local minimum only. This 
problem can be solved by adding a momentum term to the training rule, which 
forces the weights to keep moving in the same direction in the error surface with-
out becoming trapped in a local minimum. Momentum simply adds a fraction of 
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the previous weight update to the current weights. This increases the size of the 
step taken towards minimum. It is therefore necessary to reduce the learning rate 
(a factor that determines how much change in the weights is carried out at each 
step) when using a lot of momentum. If a high learning rate is used, the algorithm 
may oscillate around the minimum and may become unstable. Too small a learn-
ing rate will take a long time to converge. The optimum value of learning rate is 
often found by trial and error. 

A radial basis function neural network has weights only between the hidden 
layer and the output layer. There are no weights between the input layer and the 
hidden layer. With each node in the hidden layer, a centre xk is associated, which 
is a vector with the same dimension as the input vector. Usually the centres are 
chosen in a random manner from the input dataset. The output o then becomes 

 ( )
1=

=∑
m

k k k
k

o w g || ||,s ,kx - x   (12.5) 

where x is the input vector, || - ||kx x  is the Euclidian norm, ks  is the spread pa-
rameter, wk are weights, ( )k kg || ||,skx - c  is the radial basis function (RBF) and m 
is the number of centres, which is the same as the number of neurons in the hidden 
layer. Some of the most common RBFs are: 

 ( )1 22 2= +
/

k kMultiquadrics: g ( x ) skx - x ;  (12.6) 

 ( ) 1 22 2
−

= +
/

k kInverse multiquadrics: g ( x ) skx - x ;  (12.7) 

 
22

ks
kGaussians: g ( ) e−= kx - xx ;  (12.8) 

 2
kThin plate splines: g ( x ) log= k kx - x x - x .  (12.9) 

Once the type of RBF function is decided and the centres are fixed, the output o 
given by Equation (12.5) becomes a linear combination of the weights. With the 
input and output dataset provided, the weights can be calculated using a multiple 
linear regression procedure so that the sum squared error between the predicted 
and the target output is minimized. 

The process of training the neural network using supervised learning is appli-
cable to problems where representative exemplars of both input pattern and output 
(target) patterns are known. In many problems where the target patterns are un-
known, unsupervised learning is used. In the unsupervised learning process, the 
network is provided with a dataset containing input patterns but not with desired 
output patterns. The unsupervised learning algorithm then performs clustering of 
the data into similar groups based on the measured attributes or features of the 
given input patterns serving as inputs to the algorithms. After the training of the 
neural network by a suitable method, the trained network needs to be tested with 
unseen data (not included in the training dataset). 
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In the area of machining, neural networks have been used for the prediction of 
cutting forces [1, 2], surface roughness [3–6], dimensional deviation [3, 4], tool 
wear [6, 7] and tool life [8, 9]. Risbood et al. [4] fitted a neural network for the 
prediction of surface roughness and dimensional deviation in a turning process. 
For the wet machining of steel with a high-speed steel (HSS) tool with 8% cobalt, 
they used only 18 training data and 8 testing data for the prediction of surface 
roughness. The weight adjustment is carried out by training data and the trained 
neural network is tested by some data to ensure that there is no overfitting of the 
network. The multilayer perceptron neural network architecture used by the au-
thors is shown in Figure 12.6. The input neurons correspond to feed f, cutting 
speed v, depth of cut d and acceleration of radial vibrations a of the turning tool, 
and the output neuron corresponds to the surface roughness Ra. The accelerations 
of the radial vibration were measured using an accelerometer. The training and 
testing data are shown in Table 12.1. While designing the network topology and 
training, it was ensured that the testing error was below 20% for each data. Later 
the fitted neural network was validated with 32 validation data. These data were 
not used in the training and testing. The results are shown in Table 12.2, where Ra 
is the experimentally obtained surface roughness and aR̂  is the neural network 
predicted surface roughness. It is seen that, in 24 out of 32 cases, the error in pre-
diction of surface roughness is less than 20%. Only in four cases is the error more 
than 25%, with a maximum error of 31.9%. Figure 12.7 shows the performance of 
the neural network pictorially. When a graph is plotted between actual and pre-
dicted values of surface roughness, most of the points are found to fall in the 
neighbourhood of the line passing through the origin and equally inclined from the 
two axes. Sonar et al. [10] fitted a RBF neural network to the data and obtained 
almost same prediction accuracy in a shorter computational time. 

 

Figure 12.6. The neural network architecture for the prediction of surface roughness From 
Risbood et al. [4] copyright 2003, Elsevier 
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Table 12.1. Training and testing data for a wet turning operation, from Risbood et al. [4] 
copyright 2003, Elsevier 

S. 
No. 

v 
(m/min) 

d 
(mm) 

f 
(mm/rev) 

a 
 (m/s2) 

Ra 
(µm) 

1 107.82 0.30 0.04 0.55 1.74 
2 106.47 0.30 0.08 0.65 2.26 
3 105.12 0.30 0.16 0.97 3.23 
4 104.80 0.60 0.04 2.92 2.74 
5 103.55 0.60 0.08 3.66 3.59 
6 106.02 0.60 0.16 2.66 2.91 
7 47.17 0.30 0.04 0.90 2.31 
8 46.55 0.30 0.08 0.73 3.21 
9 45.95 0.30 0.16 2.41 4.64 

10 48.75 0.60 0.04 0.65 3.18 
11 48.14 0.60 0.08 0.58 4.52 
12 47.52 0.60 0.16 1.73 5.43 
13 27.71 0.30 0.04 0.95 2.06 
14 27.35 0.30 0.08 0.83 2.90 
15 26.99 0.30 0.16 0.88 5.20 
16 27.71 0.60 0.04 0.59 2.87 
17 27.35 0.60 0.08 0.72 4.00 
18 26.99 0.60 0.16 1.42 6.20 
1a 74.13 0.40 0.10 2.48 4.80 
2a 42.98 0.40 0.10 0.67 4.24 
3a  36.87 0.50 0.12 1.07 4.55 
4a  35.96 0.30 0.12 0.95 5.21 
5a  78.10 0.60 0.12 2.10 4.57 
6a  76.43 0.60 0.05 1.23 2.91 
7a  73.95 0.30 0.05 0.76 2.52 
8a  72.92 0.60 0.04 0.79 2.81 

a test datasets 

 
Figure 12.7. Predicted versus actual surface roughness in turning by HSS tool in the 
presence of coolant. From Risbood et al. [4] copyright 2003, Elsevier 
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Table 12.2. Results of experiments carried out to test the performance of fitted neural 
network model for the wet turning operation. from Risbood et al. [4] copyright 2003, Elsevier 

S. no. 
F 

(mm/rev) 
v 

(m/min) 
d  

(mm) 
a 

(m/s2) 
aR   

(µm) 

ˆ
aR  

(µm) 
% 

error 

1 0.08 34.71 0.60 0.63 3.67 4.15 –13.10 
2 0.04 23.45 0.30 0.42 1.99 2.28 –14.57 
3 0.04 64.56 0.40 0.66 2.13 2.81 –31.90 
4 0.12 32.87 0.30 0.48 4.29 3.98 7.23 
5 0.04 54.28 0.60 0.55 2.78 3.12 –12.23 
6 0.16 29.39 0.60 1.12 5.22 6.02 –15.32 
7 0.12 20.88 0.40 0.67 4.79 4.04 15.65 
8 0.08 54.91 0.40 2.80 3.53 4.33 –22.66 
9 0.06 38.50 0.30 0.47 3.37 2.64 21.66 

10 0.08 34.71 0.60 0.57 3.73 4.13 –10.72 
11 0.04 23.45 0.30 0.52 1.99 2.26 –13.56 
12 0.04 64.56 0.40 0.54 2.84 2.75 3.16 
13 0.12 32.87 0.30 0.55 5.26 4.03 23.38 
14 0.04 54.28 0.60 0.71 3.76 3.17 15.61 
15 0.16 29.39 0.60 0.98 5.44 6.02 –10.66 
16 0.12 20.88 0.40 0.73 3.76 4.09 –8.77 
17 0.08 54.91 0.40 0.73 3.48 3.76 –8.05 
18 0.06 38.50 0.30 0.56 3.77 2.63 30.23 
19 0.04 48.70 0.40 0.54 2.39 2.56 –7.11 
20 0.08 61.88 0.50 0.98 4.68 3.99 14.74 
21 0.08 60.56 0.50 0.77 3.14 4.00 –27.38 
22 0.16 100.85 0.50 1.49 3.11 2.90 6.75 
23 0.04 26.48 0.40 0.37 2.03 2.41 –18.72 
24 0.06 49.25 0.30 0.86 3.13 2.78 11.18 
25 0.04 106.34 0.30 0.94 2.65 2.20 16.98 
26 0.06 45.95 0.60 1.16 3.70 3.70 0.00 
27 0.06 101.80 0.60 2.70 2.51 2.93 –16.73 
28 0.16 45.99 0.30 1.15 5.87 5.54 5.62 
29 0.16 104.20 0.30 2.23 3.36 3.89 –15.77 
30 0.16 45.95 0.60 2.28 5.06 4.80 5.14 
31 0.16 46.97 0.60 2.43 6.35 4.74 25.35 
32 0.16 103.10 0.60 3.32 4.72 3.59 23.94 

12.3 Fuzzy Set Theory 

In the conventional crisp set theory, an element is either a member of the set or a 
non-member of the set. With each member, we can associate a number 1 or 0, 
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depending on whether it is a member or non-member of the particular set. We may 
call this number the membership grade of the element in the set. In crisp set the-
ory, the membership grades of the elements contained in the set are 1 and the 
membership grades of the elements not contained in the set are 0. In fuzzy set 
theory, the value of the membership grade of an element of the universe may have 
any value in the closed interval [0, 1]. A membership grade 1 indicates full mem-
bership and 0 indicates full non-membership in the set. Any other membership 
grade between 0 and 1 indicates partial membership of the element in the set. 

Let us consider an example to understand the concept of crisp and fuzzy set. 
Assume that there are five machined shafts designated by a, b, c, d and e. The 
CLA surface roughness values of the machined shafts are 0.6, 0.8, 1.2, 3.0 and 4.1 
μm, respectively. If we construct a set A as the set of shafts having surface rough-
ness less than 1.5 μm, then clearly the shafts a, b and c are the members of the set 
and set A may be represented as 

 =A { a,b,c } .  (12.10) 

Now, let us construct another set B of shafts having low surface roughness. 
There is a degree of subjectivity in deciding the definition of low surface rough-
ness in a particular context. One possible fuzzy set B may be 

 =B { 1/a, 0.8/b, 0.5/c, 0/d, 0/e},  (12.11) 

In the above set, the shafts have membership grades of 1, 0.8, 0.5, 0 and 0 re-
spectively, indicated before an oblique slash with each shaft. Here, shaft a is a full 
member of the set B, shafts b and c are partial members, and shafts d and e are 
non-members. Someone else may wish to form the set B as 

 =B { 1/a, 0.9/b, 0.6/c, 0/d, 0/e},  (12.12) 

Here, the membership grades of b and c have changed; nevertheless the mem-
bership grade of b is more than that of c. Thus, although the membership grades 
are subjective, they are not arbitrary. However, some skill is needed in the forma-
tion of a fuzzy set that properly represents the linguistic name assigned to the 
fuzzy set. 

Fuzzy set theory may be called a generalization of conventional crisp set the-
ory. Various set-theoretic operations commonly used in crisp set theory have been 
defined for fuzzy set theory as well. These operations reduce to their conventional 
forms for crisp sets. For example, the intersection of two fuzzy sets A and B, i.e., 

∩A B  is defined as a set in which each element has a membership grade equal to 
the minimum of its membership grades in A and B. Similarly, the union of two 
fuzzy sets A and B, i.e., ∪A B  is defined as the set in which each element has a 
membership grade equal to the maximum of its membership grades in A and B. 

The application of fuzzy sets extends to logic. In the classical binary logic, a 
statement is either true or false. Quantitatively, we can say that the truth value of a 
statement is either 1 or 0. In fuzzy logic, it is possible for a statement to have any 
truth value in the closed interval [0, 1]. For example, the statement “The CLA 
surface roughness value of 1.2 μm is a low surface roughness.” may be assigned a 
truth value of 0.7 by some expert. 
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Another offshoot of fuzzy set theory is fuzzy arithmetic. Fuzzy arithmetic deals 
with operations on fuzzy numbers. The fuzzy numbers are generalization of inter-
val numbers. An interval number is specified by an upper and a lower bound. For 
example, (3, 5) is an interval number with a lower bound of 3 and upper bound of 
5. The interval numbers are used when the value of a variable is expected to lie in 
a range. A fuzzy number consists of the different interval numbers at different 
membership grades. A requirement of the fuzzy number is that the membership 
grade function of fuzzy number should be convex. Figure 12.8 shows examples of 
valid and invalid fuzzy numbers. 

The fuzzy arithmetic operations are defined over each α-cut. An α-cut of  
a membership grade function μ(x) is the set of all x such that μ(x) is greater or 

 
Figure 12.8. The valid and invalid fuzzy numbers: (a) a valid triangular fuzzy number, (b) 
a valid trapezoidal fuzzy number, (c) a valid bell-shaped fuzzy number, (d) a non-convex 
invalid fuzzy number (e), a non-normal invalid fuzzy number and (f) a discontinuous 
invalid fuzzy number 
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equal to α. Thus, at a particular α-cut, an interval number is obtained correspond-
ing to the interval number at the membership grade of α. If two fuzzy numbers are 
represented by 1 2

α α( a , a )  and 1 2
α α( b , b )  at an α-cut, then four basic arithmetic 

operations are defined as follows: 

 ( ) ( ) ( )1 2 1 2 1 1 2 2
α α α α α α α α+ = + +Addition: a ,a b ,b a b ,a b ,  (12.13a) 

 ( ) ( ) ( )1 2 1 2 1 2 2 1
α α α α α α α α− = − −Subtraction: a ,a b ,b a b ,a b ,  (12.13b) 

 ( ) ( ) ( )1 2 1 2 1 1 2 2
α α α α α α α α× = × ×Multiplication: a ,a b ,b a b ,a b ,  (12.13c) 

 ( ) ( ) ( )1 2 1 2 1 2 2 1
α α α α α α α α÷ = ÷ ÷Division: a ,a b ,b a b ,a b . (12.13d) 

Other arithmetic operations can be derived from these four basic operations. 
The fuzzy arithmetic operations can be used to obtain the fuzzy value of the ex-
pression. Care must be taken when a variable occurs more than once in an expres-
sion. In this case, the blind application of fuzzy arithmetic will provide wider than 
realistic interval of the value of expression at an α-cut. One way to avoid this 
problem is to carry out one computation by taking the lower bound, and the other 
computation by taking the upper bound of the variable at each α-cut. 

In many situations, a fuzzy parameter is estimated by a computer code rather 
than by a closed-form expression. In this case, at each α-cut, the upper bound of 
the parameter may be obtained by running the code for those combinations of 
lower and upper bounds of the independent variables that provide the lower and 
upper bounds of the parameter. In machining process, a number of imprecise vari-
ables are involved that can be represented by fuzzy numbers, and computation can 
be carried out to get an estimate of the dependent variables in the form of fuzzy 
numbers. The material parameters and the friction, for example, can be treated as 
fuzzy numbers in finite element code to predict the cutting forces in the form of 
the fuzzy numbers. This will provide more insight to a higher level decision-maker 
than the prediction in the form of the crisp numbers. 

The fuzzy set theory can also be used to make prediction from the data. As an 
example, suppose that, in a finish turning process, the surface roughness of the 
turned job is to be predicted for a particular feed and cutting speed. The estimation 
of surface roughness consists of four steps. The first step is fuzzification, in which 
the crisp values of feed and cutting speed are fuzzified, i.e., they are assigned to 
linguistic fuzzy sets. A variable may be associated with more than one fuzzy set 
with different membership grades for different sets. For example, the given feed 
value may be called “high feed” with a membership grade 1μ  and “low feed” with 
a membership grade 2μ . Similarly, the cutting speed may be called “low cutting 
speed” with a membership grade 3μ  and “high cutting speed” with a membership 
grade 4μ . 

Once the independent variables are fuzzified, the next step is carried out. In this 
step, called the rule evaluation step, the strength of the various rules is evaluated. 
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Various rules are kept in a rule bank, which may be prepared by experts based on 
their experience or may be generated from data following systematic procedures 
[11]. For the present example, the four rules could be: 

Rule 1: If the feed is low and the cutting speed is low, then the surface rough-
ness is medium. 

Rule 2: If the feed is low and the cutting speed is high, then the surface rough-
ness is low. 

Rule 3: If the feed is high and the cutting speed is low, then the surface rough-
ness is high. 

Rule 4: If the feed is high and the cutting speed is high, then the surface rough-
ness is medium. 

In each rule, the ‘if’ part is called the antecedent and the ‘then’ part is called the 
consequent. The strength of a rule is equal to the truth value of the antecedent. If 
the antecedent consists of the statements separated by ‘and’, which is equivalent to 
intersection operation, the truth value of the antecedent is equal to the minimum of 
the truth values of each of the statements. For example, consider the first rule. The 
membership of the given feed value in the fuzzy set ‘low feed’ is 2μ , as described 
before. Hence, the truth value of the statement ‘the feed is low’ is 2μ . Similarly, 
the membership of the given cutting speed in the fuzzy set ‘low cutting speed’ is 

3μ . As both statements in the antecedent are separated by ‘and’, the truth value of 
rule 1 is min( 2μ , 3μ ). This is the strength of the rule. If the antecedent consists of 
the statements separated by ‘or’, which is equivalent to the union operation, the 
truth value of the antecedent is equal to the maximum of the truth values of each 
of the statements. For a given feed and cutting speed, a number of rules are appli-
cable with different strengths. Now, we pay attention to the consequent part of the 
rules. Let us assume that the strengths of the four rules in the above example are 
0.06, 0.14, 0.24 and 0.56. Membership functions for the fuzzy sets “low surface 
roughness”, “medium surface roughness” and “high surface roughness” are shown 
in Figure 12.9. These fuzzy sets are clipped at the membership grades correspond-
ing to the rule strengths, as shown in Figure 12.10. The clipping is done by slicing 
off the portion of the membership function having membership grade more than 
the strength of the rule. 

 
 Figure 12.9. Fuzzification of CLA surface roughness 
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Figure 12.10. Clipping of the fuzzy sets based on the strengths of the rules 

 
Figure 12.11. Aggregated fuzzy output for prescribed input parameters 

The third step is rule aggregation. The clipped rules are aggregated by applying 
union operation as shown in Figure 12.11. This provides the output viz. surface 
roughness in this case, in the form of a fuzzy variable. This needs to be defuzzified 
in the fourth step. There are various methods of defuzzification. One method is 
finding out the centroid of the area covered by the membership function of the 
aggregated output. The defuzzified output corresponds to the horizontal coordinate 
of the centroid. Another simpler method is to take the output as the mean of the 
outputs at the maximum membership grade. In this way, the surface roughness can 
be predicted for a given set of input variables. 

12.4 Neuro-fuzzy Modelling  

Neural networks have a good learning capability. However, they act as black 
boxes. Fuzzy-set-based systems can incorporate expert knowledge and are gener-
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ally transparent. Often, it is convenient to apply both these techniques together. 
There are two ways in which both these techniques can join hands. One way is to 
have two separate modules for the neural network and fuzzy set, and use these 
modules in the main task appropriately. For example, for predicting the surface 
roughness in a turning process, Abburi and Dixit [12] trained a neural network by 
using shop floor data. The trained network was used to generate a large number of 
predicted datasets. These datasets were used to feed a fuzzy-set-based rule-
generation module. The generated rules were in the form of IF–THEN rules, pro-
viding transparency to a user. The developed rule base was used for predicting the 
surface roughness by using a fuzzy inference system. The second way is to have 
an entirely different technique which uses the features of both the fuzzy set and 
the neural network, but can be classified into neither category. One such technique 
is the adaptive neuro-fuzzy inference system (ANFIS) [13], which can be consid-
ered a child of neural network and fuzzy logic. In this section, we briefly describe 
the ANFIS. 

A typical architecture of ANFIS having two inputs as feed f and cutting speed v 
is shown in Figure 12.12. The input data is fuzzified in the first layer. Each neuron 
in this layer represents a linguistic fuzzy set such as “small feed”, “large depth”, 
etc. Each neuron takes the value of an input and emits a membership grade corre-
sponding to that input. Thus, each neuron houses a membership function. The 
membership function may be fixed based on the expert knowledge, or may contain 
some adjustable parameters called premise parameters. 

 
Figure 12.12. A typical ANFIS architecture 
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Layer 2 of the ANFIS contains neurons which basically emit the strength of 
various rules. The number of neurons in this layer will be equal to the number of 
fuzzy rules. The input to each neuron is the membership grades of feed and depth 
of cut. In the previous section, we mentioned that the strength of a rule may be 
evaluated by the “minimum” operator. Thus, if the feed value has a membership 
grade of 0.7 in the fuzzy set “large feed” and the depth of cut has a membership 
grade of 0.6 in the fuzzy set “large depth of cut”, then the strength of the rule hav-
ing the IF part of “If feed is large and depth of cut is large” can be considered as 
min(0.7, 0.6), i.e., 0.6. Note that it is not the only way to calculate the strength of a 
rule containing two statements connected by an “and”. In general any T-norm 
operator can be used to represent fuzzy intersection or “and” in the English lan-
guage. Some of the most frequently used T-norm operators are: 

 1 2 1 2μ μ μ μ=minMinimum: T ( , ) min( , ) ,  (12.14a) 

 1 2 1 2μ μ μ μ=apAlgebraic product: T ( , ) ,  (12.14b) 

 1 2 1 20 1μ μ μ μ= + −bsBounded sum: T ( , ) max( , ) ,  (12.14c) 
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  (12.14d) 

Layer 3 normalizes the strength of the rules. Each neuron in layer 4 emits the 
weighted output corresponding to a rule. The output of the ith fuzzy rule is taken 
as 

 = + +i i i if p f q v r ,  (12.15) 

where pi, qi and ri are the adjustable parameters called the consequent parameters. 
Note that the output of the fuzzy rule given by Equation (12.15) is in the form of a 
function. This type of rule is used in a Sugeno model. The types of fuzzy rules 
described in the previous section are used in a Mamdani model. Layer 5 consists 
of a single neuron, which just sums the inputs. 

The network training is carried out by adjusting the premise and consequent pa-
rameters so as to minimize the error. In the forward pass, the consequent parame-
ters pi, qi and ri can be obtained by a least-squares procedure for fixed premise 
parameters of the membership functions. In the backward pass, the consequent 
parameters are fixed and the premise parameters can be obtained by a suitable 
optimization procedure to minimize the backpropagated error. Apart from the 
gradient descent algorithm, a number of optimization algorithms may be used for 
this purpose. The reader may also note that this is not the only possible topology 
for an ANFIS. For further details of soft computing techniques, the readers may 
refer to the textbooks [13–15]. 
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12.5 A Note on FEM Modelling 

We have discussed some of the soft computing techniques. These techniques re-
quire huge amount of data for proper modelling. It is always better to take advan-
tage of the help of the physics of the process of making a model. The physics of 
the process needs to be expressed in the form of differential equations. The minite 
element method (FEM) is a tool to solve these differential equations. In this 
method, the domain is discretized into a number of small elements. The output 
variable to be determined is approximated by a combination of functions that are 
continuous inside the elements and possess at least some order of continuity at the 
interface of the two elements. Each element contains certain points, which are 
called nodes. The approximating function is expressed in the form of the nodal 
values. The nodal values of the output variable are obtained in such a manner that 
the differential equations are best satisfied with the given approximation. The 
details of the FEM can be found in a number of textbooks [16–18]. 

In machining, the FEM has been extensively used for the determination of cut-
ting temperatures [19–22]. For determining the temperature distribution in the tool 
and the workpiece by a control-volume approach, the following heat conduction 
equation needs to be solved: 

 
2 2 2

2 2 2 ρ
⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + = + + +⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂∂ ∂ ∂ ⎣ ⎦⎣ ⎦

T T T T T T Tk Q c u v z
t x y zx y z

,  (12.16) 

where k is the thermal conductivity, T is the temperature, Q  is the rate of heat genera-
tion per unit volume, ρ is the density, c is the specific heat, t is the time and (u, v, w) 
are the velocity components of a particle at coordinates (x, y, z). The heat generation 
is due to plastic deformation of the work material and the friction at the tool surfaces. 

For obtaining the heat generation due to plastic deformation and also for ob-
taining the cutting forces, the machining process may be simulated using the finite 
element method. There are two approaches for modelling: the updated Lagrangian 
[23] and Eulerian [24] methods. In the updated Lagrangian approach, the motion 
of each particle is followed, whereas in the Eulerian approach a control volume is 
chosen to find various quantities of interest at the spatial coordinates. In general, 
the finite element simulation of machining processes is computationally expensive 
due to the non-linear nature of the problem. The finite element simulation of ma-
chining process is carried out iteratively. In each iteration, a number of linear 
equations need to be solved. Among the Eulerian and Lagrangian formulation, the 
latter takes much more time than the former but is able to predict more detailed 
information such as the residual stresses in machining. The accuracy of the finite 
element simulation is dependent on the accuracy of the material parameters and 
friction characteristics. The machining process occurs at high strain rates and 
temperature. Therefore, the flow stress of the work material need to obtained from 
deformation tests at high strain rate and temperature. There is always some uncer-
tainty in the determination of flow stress. The uncertainty is greater for the values 
of the friction at tool–job and tool–chip interface. It therefore becomes more 
meaningful to carry out finite element simulations with fuzzy parameters. This, 



348 S. Deb and U.S. Dixit 

however, further increases the computational time. One way to reduce the compu-
tational time is to train a neural network from the data obtained by FEM and use 
the neural network for prediction of the machining parameters. 

Besides the simulation of machining process, the finite element model has been 
used for the predictions of tool wear and fracture of the cutting tool [25–28]. It has 
also been used for predicting the integrity (residual stresses, microhardness and 
microstructure) of machined surfaces [29, 30]. 

12.6 Machining Optimization 

Optimization of machining processes is one of the most widely investigated prob-
lems in machining. The objective functions in the machining problems are: (1) mini-
mization of cost of machining, (2) maximization of production rate and (3) maximi-
zation of profit rate. A weighted combination of these objectives may be taken, or the 
problem can be solved as a multi-objective optimization problem. In the machining 
optimization problem, there are constraints on tool life, surface finish, cutting force, 
machining power, etc. Usually the machining processes are performed in a number of 
passes, the last pass being the finishing pass and other passes being the rough passes. 
In a multipass machining process, the cutting speed, feed and depth of cut in each pass 
are the primary variables. We shall discuss the issues in machining optimization by 
taking the example of multipass turning. 

12.6.1 Objective Functions and Constraints 

Consider the multipass turning of a cylindrical work piece of length L, initial di-
ameter D0 and final diameter Df. The production time per component is given by 

  = + + + + +c tR c tF
p tR tF l ts

t T t TT T T T t
T T

,  (12.17) 

where TtR is the total cutting time for rough machining, tc is the time required for 
changing a tool, T is the tool life, Ttf is the total cutting time for finish machining, 
Tl is the job loading and unloading time, and tts is the total tool setting time for a 
job. The total cutting time for rough machining is obtained as the summation of 
the cutting time for m roughing passes. Thus, 

  1
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tR
R Ri

LDT
v f

, (12.18) 

where iRv and iRf  are the cutting speed and feed, respectively, at the ith roughing 
pass and Di–1 is the workpiece diameter at the beginning of that pass. Note that the 
cutting speed is defined as the surface speed of the work piece at the beginning of 
the pass. The total tool setting time is given as 

  1= +ts st ( m )t ,  (12.19) 

where ts is the setting time for each pass. 
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The tool life T is a critical parameter for the objective function. The tool life is 
a function of machining parameters, viz. feed (f), cutting velocity (v) and depth of 
cut (d) as well as the tool–job combination and the machine tool. For a given ma-
chine tool and tool–job combination, the tool life can be expressed as a function of 
f, v and d. A neural network can be used for online prediction of the tool life. 

The cost of machining for a workpiece, Cp, can be expressed as 

 
1 20= + +tR tF

p p t t
T TC C T C C
T T ,  (12.20) 

where C0 is the operating cost per unit time, 1tC  is the tool change cost for a 
roughing tool and 2tC  is the tool change time for a finishing tool. If the same tool 
is used for roughing and finishing passes, then 1tC  = 2tC . If the price of a work 
piece is fixed as Pp, then the profit rate PR is expressed as 

 

−
= p p

R
p

P C
P

T .  (12.21) 

Equations (12.17), (12.20) and (12.21) can be used as the objective functions. 
The machining optimization problem may be subjected to various constraints. 

Some of the constraints may be as follows: 

1. Constraint on the tool life: The tool life should not be too low or too high. If 
the tool life is too low, then it will fail without machining even one piece. 
While machining a workpiece, if the tool is changed in between, it will affect 
the surface finish and dimensional accuracy of the workpiece. As a thumb 
rule, the tool life should be at least such that 20 components can be produced 
without the need of replacing the tool. In other words, the deterioration in tool 
life should be limited to less than 5% in machining a component. At first sight, 
it appears that there is no need to have a constraint on the maximum permissi-
ble tool life. However, a close examination of shop floor practice reveals that 
there is no advantage in operating at parameters providing too high value of 
tool life. Most factories follow the policy of replacing tools after a certain in-
terval of time. If the tool life is too high, tools may be underutilized. Also, if 
certain types of tools have been specifically procured for a particular batch 
production, often it may not be advantageous to preserve the tools once the 
entire batch has been produced. In that case also, too high a tool life will mean 
underutilization of tools. However, in most cases, the constraint on tool life 
may turn out to be an inactive constraint. 

2. Constraint on the surface finish: Most of the time a constraint on the upper 
limit of surface roughness is prescribed. However, the possibility of having 
a constraint on the lower limit of the surface roughness cannot be ignored. 
Surface roughness affects the heat transfer characteristics and a rough sur-
face is beneficial, for example, in order to have greater heat transfer in  
a pool boiling process. Similarly, a specific tribological characteristic may 
be obtained by controlling the surface roughness. For the given process pa-



350 S. Deb and U.S. Dixit 

rameters, the surface roughness may be predicted by a trained neural net-
work as described in Section 12.2. 

3. Constraints on the machining forces: The neural network can be used for 
the modelling of cutting forces in a machining process. These forces 
should be less than the prescribed forces to avoid tool breakage and exces-
sive deflections of the job and the tool. 

4. Constraint on the machining power: The machining power is obtained by 
dividing the product of the main cutting force and cutting speed by the ef-
ficiency of the machine tool. The machining power constraint requires that 
the machining power be less than the prescribed power. 

5. Constraints on vibrations: The vibrations during a machining process 
should be low as they affect the accuracy and precision of the job. 

6. Constraint on dimensional deviation: The dimensional deviation of the 
workpiece should be kept within the prescribed limit. If a model for pre-
dicting the dimensional deviation in machining is available, it can be used 
in this constraint. Otherwise the constraints on machining forces will indi-
rectly impose the constraint on dimensional deviation. 

7. Constraints on geometric relations: It is obvious that the number of passes 
m in a machining operation is an integer quantity. The following geometric 
relation has to be satisfied for the multi-pass turning process: 
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,  (12.22) 

where Df
 is the diameter of the finished job, iRd  is the depth of cut of the 

ith roughing pass and Fd  is the depth of cut of the finish pass.  
Apart from these constraints, there are variable bounds on the cutting speed, 

feed and depth of cut. 

12.6.2 Optimization Techniques 

The general form of a single-objective optimization problem is 

 

Minimize f ( ),
subject to certain constraints.

x

 (12.23) 

where x is a vector containing the decision variables. The maximization of a func-
tion is equivalent to the minimization of the negative of the function. Thus, even a 
maximization problem can be expressed in the form of Equation (12.23). There 
are a plethora of optimization techniques available in the literature [31–33]. We 
shall provide a glimpse of some techniques. 

12.6.2.1 Golden Section Search Method 

For one-dimensional minimization, there is an efficient technique for finding the 
minimum of a unimodal function. A function which has got only one minimum in 
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a certain interval is called a unimodal function in that interval. Figure 12.13(a) 
shows a unimodal function. Figure 12.13(b) shows a multi-modal function for 
comparison. The minimum of a unimodal function can be found by a number of 
region-elimination methods that require only the function values but not derivative 
information. The general procedure of a region-elimination method is as follows: 

Step 1: Find an interval (a, b) in which the minimum is expected to lie. The in-
terval can be obtained by physical consideration or by a systematic mathematical 
procedure. The length of the interval should be large enough to ensure the pres-
ence of a minimum in the range. 

Step 2: Choose two points x1 and x2 in the interval (a, b) and evaluate the func-
tion f (x) at these points. 

Step 3: If f (x1) > f (x2), then minimum does not lie in interval (a, x1), requiring 
replacement of the interval (a, b) by the interval (x1, b). Else, if f (x2)>f (x1), then 
minimum does not lie in interval (x2, b), requiring replacement of the interval  
(a, b) by the interval (a, x2). Else, if f (x2)=f (x1), the minimum lies in the interval 
(x1, x2), requiring the replacement of the interval (a, b) by the interval (x1, x2). 

Step 4: If the current interval is not sufficiently small, go to step 2. 
It is clear from Figure 12.13(b) that the region-elimination method will not be 

effective for a multi-modal objective function. 
There are a number of region-elimination methods depending on how we 

choose the points x1 and x2. One of the efficient one-dimensional search methods 
in this category is the golden section search. In this method, for the interval (a, b), 
two points x1 and x2 are chosen as follows: 

 1 1τ τ= + −x a ( )b ,  (12.24) 

 2 1τ τ= + −x b ( )a ,  (12.25) 

where τ is called a golden number and is equal to 0.618. This procedure ensures 
that in the subsequent iterations (when the interval gets changed), only one new 
point has to be chosen. The other point becomes common with a point of the pre-

 
Figure 12.13. (a) A unimodal function. (b) A multimodal function 
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vious iteration. Thus, at each iteration only one function evaluation is needed. The 
interval reduces by a factor of (0.618)n–1 after n function evaluations. Once the 
interval has become sufficiently small, the minimum can be taken as the middle 
point of the interval. For further accuracy, one may take three points in the re-
duced interval and fit a quadratic function to find the minimum. 

12.6.2.2 Sequential Quadratic Programming (SQP) Method 

For constrained optimzation of multivariable problems, there are a number of meth-
ods, which do not require the gradient information, viz. complex search method, ran-
dom search method, etc. These methods are called direct search methods. However, 
we discuss here a powerful method requiring gradient information. The method is 
called sequential quadratic programming (SQP) and is quite efficient in handling 
constrained optimization problems. The principle of this algorithm is explained here. 

Consider the following optimization problem with l equality and m inequality 
constraints: 

 
Minimize 

≤i i

f ( ),
subject to h ( )=0, i=1 to l;  g ( ) 0, i=1 to m

x
x x

.  (12.26) 

At a particular guess point, Equation (12.26) is converted to the following 
quadratic form: 
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In the above equation, 1 2= T
n( d ,d , .......,d )d  is the vector of decision variables 

of the problem, ∇  is the gradient operator and H is the Hessian matrix. In particu-
lar, 
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The gradients and the Hessian matrix are evaluated at the guess point. 
The variable d is actually a search direction. It indicates that, moving in this di-

rection, one will get the minimum. The question arises how much we should 
move. For this, we assume that the minimum point xm is obtained by the following 
expression: 

 λ= +mx x d ,  (12.30) 

where λ is a step length chosen to reduce the value of a suitable merit function. 
Once the value of xm is substituted in the merit function, the merit function be-
comes a function of the scalar λ. The optimum value of λ can be found by a one-
dimensional optimization method such as the golden section search method, de-
scribed in Section 12.6.2.1. The merit function can be a penalty function of the 
following form: 
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where R is a very large value called the penalty parameter. 
At the obtained optimum point xm, the objective function is again converted to 

the form of Equation (12.27), i.e., a quadratic approximation for the function and a 
linear approximation for the constraints is used. After this, the procedure is re-
peated. Thus, the optimization process is iterative and the iterations are continued 
until convergence is obtained. 

12.6.2.3 Genetic Algorithms 

Conventional optimization methods are not suitable for optimization problems 
with multiple optimal solutions. There are newer methods, which start the search 
process with a population of solutions. These methods are inspired by natural 
processes and a sound mathematical basis for these methods needs to be devel-
oped. These methods can find multiple optimum solutions and globally optimum 
solutions and are suitable for multi-objective optimization problems. One category 
of such methods is genetic algorithms (GAs). GAs are inspired by the mechanics 
of natural genetics and natural selection. Although there are a lot of variants of 
genetic algorithms, we describe here a simple binary-coded genetic algorithm with 
reference to the optimization of the finish pass turning considering the feed and 
the cutting speed as decision variables. 

In the binary-coded genetic algorithm, the variables are represented in binary 
form. For example, if feed varies from 0 to 0.15 mm/rev in a turning operation, it can 
be represented with a 4-bit binary number with 0000 representing zero feed and 1111 
representing a feed of 0.15 mm/rev. A finer resolution in feed values may be obtained 
by choosing a higher bit number. Similarly let us consider that a cutting speed in the 
range of 0 to 310 m/min is represented by a 5-bit number with 11111 representing the 
cutting speed of 310 m/min in the usual way. A typical combination of feed and cut-
ting speed can be represented by putting these two binary numbers together to make it 
a 9-bit string. For example, the reader may observe that 101010000 is a string repre-
senting a feed of 0.1 mm/rev and cutting speed of 160 m/min. 
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The search for the optima in GA is started by taking a number of random 
strings forming the population. Choosing an appropriate population size is crucial. 
The population of the strings is successively evolved by three operators: reproduc-
tion, crossover and mutation. 

In reproduction, the good strings in the population are probabilistically as-
signed to a large number of copies. The fitness of the string decides how good the 
string is. In minimization problem, the fitness function can be taken as 

 1 1= +F( ) /( f ( ))x x , (12.32) 

For infeasible solution, a very low value of fitness may be assigned. There are  
a number of ways to do reproduction. One popular and easy-to-implement method is 
the tournament selection. In this, each string plays duel tournaments with two other 
randomly chosen strings. In a tournament, the fitnesses of the two strings is compared 
and the winning string is retained. It is clear that the best string will always remain and 
the worst string will be eliminated from the population. The fate of the other strings is 
dependent on chance. Finally, it is expected that, as a result of this operation, the 
number of good strings will be more than the bad ones in the population. 

The second operation is crossover. In this, two new strings are created by ex-
changing the bits between two strings. For example, consider two strings chosen at 
random from a population, called parent strings. A single-point crossover opera-
tion is performed by randomly choosing a crossing site along the string and by 
exchanging all the bits on the right-hand side of the crossing site as shown; 

 010001 111 010001 011
100110 011 100110 111⇒| |

| |  

The new strings formed are called the children strings. The crossover operation 
is performed with certain a crossover probability, usually lying between 0.75 to 
0.95. 

In the last operation, mutation, one or more bit of a string may be changed ran-
domly. However, the probability of mutation is kept quite low, between around 
0.01 and 0.05. The mutation operation serves the crucial role of preventing the 
algorithm from becoming stuck in the local optimum. 

After the application of three GA operators in succession, a new generation is 
formed and an iteration is said to be complete. The iterations are carried out until 
the average fitness in successive generations more or less becomes constant. The 
entire methodology is illustrated by a flowchart in Figure 12.14. The application 
of GA to machining process optimization has been carried out by a number of 
researchers [34–36]. 
There are other newer population-based techniques that are proving to match the 
capabilities of GAs and on occasions outperform GAs. Two such techniques are 
particle swarm optimization (PSO) that was developed by Eberhert and Kennedy 
[37] and ant colony optimization (ACO) that was first proposed by Dorigo et al. 
[38]. PSO is a population-based algorithm that simulates the social behaviour of 
a flock of birds for the search of approximate solutions to optimization problems. 
The ACO algorithm is a population-based algorithm that simulates the social 
behaviour of a colony of ants for the search of  approximate  solutions to  optimization 
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Figure 12.14. A flow chart illustrating the methodology of genetic algorithm 

problems. ACO algorithm has been used for the determination of optimal machin-
ing parameters such as cutting speed, feed, depth of cut and number of cuts in 
order to minimize the production cost subject to various machining constraints 
such as tool life, surface finish, cutting forces and power, and temperatures [39]. 

12.7 Future Challenges 

Earlier in this chapter, we compared the intelligent system of a machine tool with 
a skilled human operator. The performance of a skilled operator is dependent to  
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a great extent on the sensory organs and the brain. Therefore, to develop an intelli-
gent system that is able to function like a skilled operator, it is necessary to develop 
good sensors and efficient computing tools. A lot of research needs to be done to 
develop effective, compact and low-cost sensors. At the same time, computational 
methods and optimization algorithms need to be further improved. The compua-
tional methods that model based on the available data need to be made more robust. 
They should be able to eliminate noise from the data and make the best out of the 
available information. There should be simultaneous efforts to understand the phys-
ics of the process and use that knowledge to complement the data modelling task. 
The proper formulation of optimization problems for different processes and choos-
ing of an efficient algorithm is another area that needs to be explored further. Lastly, 
the intelligent system must exploit the developments in Internet technologies, which 
requires research in the Internet-based machining area. 
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