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Abstract

This paper proposes a multiple salient region detection and localization approach for
unstructured industrial robot work environments with arbitrarily located and orientated
objects. Different from the existing, the authors’ novel technique to detect multiple salient
regions performs locally adaptive center-surround operations on proto-object partitions
obtained through color consistency and spatial proximity analysis. The multi-scale center-
surround operations are done by masks that are local structure-aware yielding regions with
precise and accurate boundaries as required for robotic manipulation. First, experiments
to evaluate the multiple salient region detection performance are carried out using four
standard databases having images with multiple salient objects. Quantitative result analy-
sis using F-measure, shuffled F-measure, shuffled AUC and MAE, and subjective result
inspection suggests that the proposed approach is in general better at collectively detecting
multiple salient regions than the state-of-the-art, including those based on deep learning.
Then, real-life experiments involving robotic manipulation are carried out to demonstrate
the utility of the multiple salient region detection method. For robotic manipulation, object
localization is improved after salient region detection by employing a fast shadow detec-
tion algorithm proposed based on hue analysis, and recognition through existing matching
techniques is applied only at the localized salient regions. The benefit of the novel multiple
salient region detection approach in the robotic manipulation system is shown using local-
ization and pose estimation accuracy, rates of detection and recognition, positional and
angular errors, and processing speed.

1 INTRODUCTION

Owing to the revolution in robotics, manufacturing indus-
tries are increasingly using robots for a number of complex
operations such as assembly, bin picking, material sorting etc.
Repeatability, as well as high precision, have been achieved
using off-line/on-line programmed robots to perform tasks
in structured environments of mass production systems [1].
Autonomous machines/robots performing active processes like
detection and recognition have also been employed to execute
complex tasks in unstructured environments [2]. However, to
perform the tasks quickly and reliably, they must have human-
like sensory abilities, especially in vision. It is well accepted that
the ability of humans in executing complex tasks significantly
surpasses that of robots, although efficiency decreases while
performing the tasks repeatedly for a long time.
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Hence, providing an autonomous industrial robot human-like
capabilities is of utmost importance as manufacturing indus-
tries require customizable mass production systems, which are
quick, reliable, and agile enough to handle material handling
diversity and variation in product design [1]. In an unstruc-
tured industrial environment, the primary necessity is to detect
and localize each object quickly and accurately in the scene
viewed by the robot. In vision, speed and accuracy are con-
tradictory requirements that humans achieve by attending to
the environment in a selective manner, which is called “selec-
tive visual attention” [3] for object detection and localiza-
tion [4]. Salient object detection algorithms have been used to
automatically select the informative parts in an image [5–7].
Human visual attention is simulated by saliency detection, which
can be used to significantly reduce the time for searching
and recognizing an object in an image. A brief discussion on
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existing multiple salient region detection methods is given in
Section 2.1.

In recent times, deep learning-based end-to-end object recog-
nition has been attempted for industrial applications a few times
[8–10] with reasonable success. However, their performance, in
general, relies heavily on accurate and vast labeled data [11],
which are hard to generate for an industrial environment and
vary from one environment to another. Therefore, many of the
latest methods for object recognition in robotic manipulation
are still based on local feature point matching [12–14]. All the
feature points in the entire image are exhaustively searched to
match them with those of the template, and the performance
of such an approach deteriorates due to the presence of back-
ground clutter in an unreliable industrial environment and sim-
ilar industrial objects [2]. Another popular approach of object
recognition in robotic manipulation for industrial applications
is based on shape matching. Several shape analysis based meth-
ods have been proposed for object recognition [15–21], where
the entire image is searched for particular objects given their
templates. Both the matching approaches are prone to per-
formance deterioration due to varying illumination condition,
and the presence of dust and dirt [22], which are expected in
an industrial environment. Therefore, instead of applying the
above recognition techniques over the whole image, if match-
ing can be applied only at the potential object locations, it
will boost the performance and accuracy of the whole sys-
tem. Here, humans’ strategy of selective visual attention imple-
mented through proper salient region detection and localization
would be effective in achieving both speed and accuracy for
industrial robotic manipulation. A brief review of recognition
methods used for robotic manipulation is given in Section 2.2.

In this paper, we propose an approach to detect and localize
multiple salient regions in images particularly to perform intel-
ligent robotic manipulation, which is inspired by the selective
visual attention strategy of humans. We then design a system to
guide a robotic arm by looking for objects quickly with uncom-
promising accuracy. The selective visual attention of humans
is implemented using the proposed approach to detect multi-
ple salient regions. Although a plethora of saliency computa-
tion and salient object detection algorithms are available, they
are highly sensitive to the large number of parameters involved
[23]. While the saliency computation approaches are good at
detecting many important areas, they do not provide accurate
object boundaries [23]. On the other hand, salient region detec-
tion approaches are tuned to detect only a few highly salient
objects (in general only one) in the scene with proper bound-
aries [23]. For a vision-guided robot to perform tasks such as
pick and place, the foremost requirement is the detection of all
objects to be manipulated by the robot as salient regions with
proper boundaries, without the necessity to change a set of ini-
tially supplied parameters.

We propose such a multiple salient region detection and local-
ization approach that focuses on detecting multiple objects. In
our approach, first, we obtain local image structure through
proto-object partitioning based on the mean-shift procedure
considering color consistency and spatial proximity analysis.
Next, center-surround operator masks adapted to the already

obtained local image structure are generated. Such local struc-
ture adapted masks are used at multiple scales to perform
center-surround operations. Multiple maps are generated from
these operations, which are then combined to produce a single
map with delineating region signatures that is directly used for
detecting multiple salient regions with precise boundaries.

The proposed multiple salient region detection approach
is compared with state-of-the-art salient region detection
approaches including those based on deep learning. Observa-
tion of qualitative results and quantitative analysis through F-
measure, shuffled AUC, MAE and our newly designed shuffled
F-measure considering multiple standard databases with images
having multiple salient objects demonstrate that the proposed
approach in general outperforms the state-of-the-art in detect-
ing multiple salient regions. This indicates that the proposed
approach is effective as a generic multiple salient region detec-
tion method.

After detecting multiple salient regions with precise bound-
aries, the subsequent aim is to localize the salient regions for
manipulation by a robot. The object localization approach is
designed to be robust in the presence of shadows, avoiding
related errors. To achieve this robustness, we propose a fast
shadow detection technique based on hue values of the detected
salient regions. Contrary to existing shadow removal techniques
[24–26], our primary goal is to quickly detect (but not remove)
only the shadow areas and avoid them during subsequent pro-
cessing.

After objects are detected and localized using our approach,
any recognition technique can be employed in our system.
For our industrial object manipulation experiments, recognition
through two popular matching techniques, namely, feature point
matching and shape matching are chosen. The combined area of
the detected and localized objects regions is substantially smaller
when compared to the entire image. Therefore, we achieve
much faster recognition by applying the recognition approaches
only at the detected and localized object regions. Moreover, as
the matching processes are restricted only to the relevant areas,
the recognition performance also improves. Therefore, our sys-
tem is designed to detect, localize and recognize multiple indus-
trial objects simultaneously in a single image at different scales
and orientations, and also to estimate their poses accurately. To
demonstrate the utility and efficiency of our entire system (that
includes multiple salient region detection followed by shadow
detection and recognition) in performing robotic object manip-
ulation, experiments are carried out to compare the proposed
robotic manipulation procedure with the standard procedure
in terms of localization, pose estimation accuracy, positional
and angular error, detection and recognition rates, and process-
ing speed. For this, we deploy a vision-guided industrial robot
manipulator for performing autonomous pick and place opera-
tions.

To summarize, the main contributions of the paper are:

∙ We propose a proto-object partitioning driven structure-
aware multiple salient region detection approach, which is
specifically designed to detect multiple salient objects, and the
proposed approach is validated against the state-of-the-art
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FIGURE 1 The proposed framework for vision guided manipulation by industrial robots with the novel modules contributed by this paper highlighted in blue

salient object detection through extensive experiments that
includes the use of our newly designed shuffled F-measure.

∙ The proposed multiple salient region detection approach uses
the local structure information from the proto-object image
partitions to design masks that capture boundaries of multi-
ple salient objects properly, which are at a standard that can
be used for localizing the objects for robotic manipulation.

∙ We propose a simple and fast hue based shadow detec-
tion algorithm to improve the localization accuracy of the
detected salient objects for autonomous robotic manipula-
tion, and the proposed algorithm is validated for the task at
hand.

∙ We show the utility of the proposed multiple salient region
detection and localization approach in robotic pick and place
operations, for which a well-defined strategy for collision-free
robotic operation is designed and a CAD model is provided
to that effect.

A concise graphical representation of our entire system is
shown in Figure 1. This work is a substantial improvement over
our preliminary work reported in [27]. The rest of the paper is
organised as follows. In Section 2, existing works related to our
proposal are discussed. Our proposed approaches for detecting
multiple salient regions and shadows are presented in Sections 3
and 4, respectively. In Section 5, other parts of the proposed
system for autonomous robotic manipulation of objects are
described. The comprehensive experimental results presented
in Section 6 demonstrate the effectiveness our novel proposals.
Section 7 concludes the paper.

2 RELATED LITERATURE

In this section, we briefly present the most relevant existing liter-
ature corresponding to the different modules of our entire sys-
tem. Hence, we present the literature under three categories: (1)
salient object /region detection, (2) object detection and recog-
nition techniques for robotic manipulation, and (3) shadow
detection techniques.

Over the past couple of decades, a plethora of approaches
have been proposed for visual attention modeling, saliency
computation, and salient region detection. A detailed review
of salient region detection can be found in [23, 28]. We
briefly discuss a few salient region detection approaches in Sec-

tion 2.1, particularly focusing on those aimed at detecting mul-
tiple objects.

A vast literature is available on object detection and recogni-
tion for robotic manipulation in an unstructured environment.
Among them, approaches based on feature point matching and
shape matching have been the popular ones for robotic manip-
ulation [2, 17, 29–31]. Here in Section 2.2, we review quite a few
such recent object recognition approaches.

Although the presence of shadows can degrade object local-
ization performance, shadow detection is not considered to
be an inherent part of an object localization system. Shadow
detection followed by its removal and then inpainting are often
clubbed together as a single separate system [32]. As shadow
removal and inpainting are generally not required in robotic
manipulation, we suggest that only the shadow detection com-
ponent be considered and proper object boundaries be obtained
during localization by avoiding the detected shadow areas.
Hence, we also discuss in Section 2.3, a few shadow detection
approaches which are parts of existing shadow removal systems.

2.1 Multiple salient object/region detection

Salient object detection approaches in general aim to detect and
segment the most (or a few highly) salient object/s in a scene
with proper boundaries, and only a few have explicitly attempted
to detect multiple salient objects [23]. Most works on salient
object detection are based on capturing the uniqueness, rarity,
local and global contrasts etc., at different locations in a scene.

The methods of [33–37] and [38] combine contrast cues with
higher-level guidance like center prior, spatial distribution prior,
region uniformity prior etc., to detect the most salient object in
the scene. [39] and [40] detected a salient object by combining
backgroundness prior with contrast to detect salient objects. As
often image boundary pixels are part of the image background,
backgroundness prior is computed from the image boundary.
As models using such backgroundness prior may fail if an object
is connected to a boundary, to overcome this issue, [33] and
[41] proposed boundary connectivity priors for salient object
detection. For the same, [42] measured a pixel’s connectivity to
the image boundary by taking the minimum barrier distance. A
couple of works like [43, 44] presented models for the detec-
tion of single as well as multiple salient objects in an image.
[43] presented a model where spatial saliency clues for salient
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object region detection are obtained from multiple-level clus-
tering of regional features and recursive processing of the clus-
tering results. [44] performed salient object detection using a
graph-based optimization framework, where they used multiple
graphs instead of one to describe different image properties. A
multiple-instance learning based saliency detection framework
that combines low, mid and high level features for detection is
proposed by [45]. [46] employed visual saliency to detect and
segment objects lying in a plane for robot navigation.

Recently, deep learning-based models have been employed
for salient object detection. [47] proposed a convolutional neu-
ral network model which uses a multi resolution 4 × 5 grid
structure to combine local and global information. [6] pro-
posed a boundary-aware salient object detection architecture
consisting of a densely supervised encoder-decoder network
for saliency prediction and a residual refinement module for
salient object map refinement. [48] proposed a framework for
salient object detection where larger resolution features of shal-
lower layers are discarded by using a partial decoder and fea-
tures of deeper layers are integrated to obtain a precise salient
object map. In [49], first, a coarse global prediction is per-
formed using various global saliency cues and then, the details
of salient object maps are refined hierarchically by integrat-
ing local context information. In [50], a more advanced fea-
ture representation is obtained by directly integrating multi-
level features. [51] proposed a salient object detection model
where context-aware multi-scale features are extracted and a
bidirectional structure is used to pass a message between them.
The framework of [52] integrates multi-level feature maps into
multiple resolutions, which simultaneously incorporate coarse
semantics information and fine details. These feature maps are
combined at each resolution to predict different maps, which
are fused to obtain salient objects. Recently, a multi-scale fea-
ture fusion framework is proposed by [53] that fuses multi-scale
features using a search cell and a search space containing rel-
evant information only. [54] proposed a single round training
approach for weakly supervised salient object detection and the
proposed aggregation module fuses features from multiple lev-
els to estimate the saliency map. [55] proposed a multiview clus-
tering method for detecting coherent groups by a structural con-
text descriptor designed based on structural properties of indi-
viduals. Feature points are clustered based on orientation and
context similarities. To demonstrate better detection in uneven
indoor lighting and complex indoor environment,[56] proposed
a joint target detection using RGB-D image based on faster R-
CNN algorithm.

2.2 Recognition approaches used in robotic
manipulation

Most of the literature [2, 29, 30, 57, 58] on pose estimation
of an object for robotic manipulation from a single image are
based on finding the best fit correspondences between input
image features and the features of stored database images. Har-
ris corner detector in combination with SIFT descriptor is used
as a feature for recognition of objects in [58]. Similarly, [57]

and [2] proposed Iterative Clustering Estimation (ICE) algo-
rithm for recognizing objects in complex scenes. Through ICE,
feature clustering for object correspondences, and pose esti-
mation are performed iteratively. While [59] performed object
recognition by combining SURF features with color histogram,
[60] used SIFT for deformable object recognition. Similarly, [30]
presented Hough transform-based clustering of SURF features
and [29] used a modified SIFT for object recognition. Instance
recognition system of [61] is based on SIFT, color, and shape
based features. [14] proposed a method for category-level object
manipulation where an object is represented by using 3D key-
points. A method of object recognition and pose estimation is
proposed in [13], where features are extracted from the colored
point cloud and feature descriptor is built using local texture
and shape information. Correspondence between a scene and
point cloud is established by performing matching using the
obtained descriptors and the final pose is estimated by applying
Hough transform and RANdom Sample Consensus. [62] pro-
posed an instance recognition and object localization approach
where a sparse feature model for training is built by structure
key points obtained from shape and texture cues. For each
object, feature descriptors are obtained by using Signature of
Histograms of Orientations and SIFT. Though feature point
matching performs well for textured objects, recognition of tex-
tureless objects by it usually turns out to be unsatisfactory as
the number of key points extracted is often not sufficient for a
proper description [22, 63].

Shape-based object detection and recognition techniques
consider precise object boundaries and match object shapes
or an edge descriptor at each discrete point in object bound-
ary to the discrete point in a given template where a suitable
cost minimizes. [17] proposed a technique where the correspon-
dence between the shape primitives obtained from the captured
scene and the boundary representation of the computer-aided
design (CAD) model is established by matching feature vec-
tors obtained from geometric properties and their relationship.
While [31] used shape (2D contour) and appearance (RGB his-
togram) to represent 2D models of objects, [16] represented an
object by taking shape and contour primitives. Similarly, object’s
contour representation is used in [18], based on which robot
vision system detects generic classes of objects in a cluttered
environment. [15] identified graspable objects by first segment-
ing the scene and then performing shape matching between
a segmented object and known object models. Similarly, [22]
used Chamfer matching along with the CAD model for object
pose estimation. [19] proposed an algorithm for detection and
manipulation of cylindrical objects by detection of elliptic shape
primitives. Elliptic shape primitive is detected by using elliptic
edge curvature and by splitting complex curves into arcs. [20]
performed 3D shape matching using the local reference frame
(LRF), which is constructed on the local surface and used as a
local feature descriptor. Although shape-based recognition is in
general reliable, the underlying algorithms are usually of higher
complexity compared to the feature-based ones, as the latter
works only on extracted key points [22, 63].

Deep learning-based object recognition has been consid-
ered lately for robotic manipulation. [64] used R-CNN for
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recognition of multiple objects for bin-picking operation. Dif-
ferent grasp poses prediction for multiple objects using deep
convolutional neural networks are presented in [65]. [66] pro-
posed a deep learning-based method for indoor object recog-
nition using color knowledge and scene knowledge as deep
features. Although deep learning methods have shown reason-
able success in industrial robotic applications, their performance
often heavily depends on the availability of appropriate vast
labeled data from the environment [11]. As industrial environ-
ments vary substantially, the availability of the required data can
not be assumed.

[67] proposed a target grab position detection technique
using a candidate region suggestion network. The advantage
of the proposed model is that it can handle external environ-
mental interference. To demonstrate better grasping of space
debris, [68] proposed a dual arm space robot with hollow shaped
end-effector pairs and caging pair method to capture com-
plex objects.

2.3 Shadow detection

Most of the state-of-the-art methods [25, 32, 69–71] on shadow
detection are based on combined use of shadow variant and
invariant image features. Chromaticity based approaches [25, 32,
69, 70] assume that chromatic components are shadow invariant
while intensity varies in the region underlying shadow. Similarly,
texture based models [25, 70] assume that textures are shadow
invariant. Hence, shadowed and non-shadowed regions can be
distinguished by measuring texture similarity and intensity vari-
ation. [32] considered illumination invariant sensing that pro-
duced only non-shadow edges, and compared it to correspond-
ing RGB image to detect shadow. For improved performance,
some authors proposed a learning-based approach [25, 70–72]
to detect shadow regions. [71] identified shadow regions by con-
sidering texture, illumination, and gradient statistics features and
the system is trained using CRF to classify shadow and non-
shadow regions. A region-based approach is proposed in [25]
where a pairwise classification of segmented regions is done
based on their color and textural information. Shadow detec-
tion by using a convolutional neural network is proposed in [72]
where feature learning is done at a super-pixel level and along
image boundaries. Though it performs well in most cases, it fails
at thin shadow regions [72]. [73] and [24] took user assistance
for shadow detection. [74] proposed a distraction-aware shadow
detection network (DSDNet) where input image features are
augmented with learned distraction features for detection of
shadows. [75] proposed a scGAN model and introduced a sen-
sitivity parameter to the generator which controls the sensitivity
of the shadow detector. [26] presented the so-called ST-CGAN
framework composed of two stacked CGAN to jointly learn
shadow detection and removal. [76] proposed a method where
image context is analyzed in a direction-dependent manner to
detect shadows and to learn spatial context in four directions
for which, an RNN module is used. A method of shadow detec-
tion and removal by integrating feature fusion and dictionary
learning is presented by [77]. Although most shadow detection

approaches mentioned above could be used for robotic manipu-
lation, preference must be for the techniques with a lower com-
putational complexity which will enable the robot to operate
faster.

3 PROPOSED MULTIPLE SALIENT
REGION DETECTION APPROACH

Our novel approach’s framework for detecting multiple salient
regions, which is application-oriented and adapts to local struc-
ture, is presented in Figure 2. First, we carry out proto-object
partitioning by employing the mean shift procedure [78]. We
select the mean shift procedure as it is one of the most pop-
ular methods to appropriately partition an image preserving
the boundaries of objects in it. This proto-object partitioning,
which considers homogeneity by taking into account similarity
in color (RGB vector) between different image locations, makes
our proposed approach local structure-aware. Next, operator
masks adapted to the local structure in the neighborhood of pix-
els are generated based on the proto-object partitions and a pre-
defined set of scale parameters. By using the corresponding gen-
erated masks around each image pixel, center-surround opera-
tions are executed at multiple scales to generate maps of salient
regions. Then, we take into account all the individual maps pro-
duced by considering all the scales and generate a combined
map that corresponds to salient regions in an image by nor-
malized addition of the maps. Finally, we detect multiple salient
regions where object boundaries are properly preserved. These
are subsequently used in object localization for robotic manipu-
lation.

3.1 Operator mask generation for detection
of multiple salient objects

In this section, we elaborate on the generation method of our
local image structure-aware center-surround operator masks,
which is application-oriented and is based on color similarity
and spatial proximity analysis. First, multiple circular Gaussian
functions with different standard deviations (𝜎) are generated.
To make the ensuing process application-oriented, these stan-
dard deviations can be considered as one-third of the expected
object scales (diameter/side length) in a given task. Such a con-
sideration allows better quantification of the distinctness of the
objects as a whole (3𝜎) against their backgrounds. If the object
scales are not known, a predefined set of scales can be used. Fur-
ther, a couple of standard deviations, one less than a single pixel
width and the other more than one-third of the largest image
dimension should be used. These will allow the capture of local
pixel-level details and a global image gist during multiple salient
region detection. On the other hand, for a generic process, the
multiple standard deviations can be taken as multiples /factors
of each other as considered in [3].

We generate a mask from a circular Gaussian function
(application-oriented) in the following manner [27]:
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FIGURE 2 Proposed multiple salient region detection approach used before shadow detection [27]

FIGURE 3 (a) Mask value assignment to any proto-object partitions
except the center partition (partition having the center of the Gaussian
function). The average (y) of all pixel values from the intersection of a partition
and the 3𝜎 extent of the Gaussian function is computed. That computed value
y is allotted as the mask value to all the in pixels in that partition. (b) Mask value
assignment to the center partition. The center value (v) of the Gaussian
function lying on a pixel inside a partition (center partition) having intersection
with the 3𝜎 extent of the Gaussian function is considered. That value v is
allotted as the mask value to all the in pixels in that partition. (c) The obtained
mask with values ∈ [0,1]. The obtained mask values for the partitions having
intersections with the 3𝜎 extent of the Gaussian function are normalized by v

to get the mask [27]

∙ Let us consider a particular pixel of the image, referred to
as the center pixel, around which such a circular Gaussian
function is centered (refer Figure 3a). Now, take into account
all the pixels from the proto-object partitions lying within the
range of 3𝜎 of the Gaussian function. So we mathematically
put I (x, y) as the image, where (x, y) ∈ L is the set having
all the image pixels, and P1, P2, … p, PN as the N proto-object
partitions such that:

Pi ∩ Pj = ∅ ∀ i, j ∈ {1, 2, … ,N }, i ≠ j and

⋃N

j=1
Pj = L. (1)

Consider the center pixel as (xc , yc ). A 2D circular Gaussian
function with a standard deviation 𝜎 and centered at (xc , yc )
is given by

G (x, y) =
1

2𝜋𝜎2
e

−((x−xc )2+(y−yc )2 )
2𝜎2 , where (x, y) ∈ L. (2)

The set containing pixels (as elements of the partitions)
occurring within the range of 3𝜎 of the Gaussian function
are:

P (xc , yc ) = {Pi , Pi ∩ E (xc , yc ) ≠ ∅}∀i ∈ {1, 2, … ,N }, (3)

where E (xc , yc ) = {(x, y), ∀(x, y) ∈ L and

(x − xc )2 + (y − yc )2 ≤ 9𝜎2}.

∙ To obtain the mask, consider such a partition having inter-
section (within the range of 3𝜎) with the Gaussian function
(Refer Figure 3a). The set having pixels in the intersecting
portion of the Gaussian function centered at (xc , yc ) and a
proto-object partition Pi is

Ai (xc , yc ) = {(x, y), (x, y) ∈ {Pi ∩ E (xc , yc )}} ∀ i. (4)

The mean value computed from the intersecting portion of
the Gaussian function is allotted to all the pixels in the parti-
tion. The average value computed is

Vavg(xc ,yc )(i ) =
1

||Ai (xc , yc )||
∑

∀(x,y)∈Ai (xc ,yc )

G (x, y). (5)

The same (average) value allotment to every pixel in the par-
tition is in line with the well-accepted understanding that pix-
els present in a partition may not be differentiated from each
other. Then, the mask value assigned is:

Maski,(xc ,yc )(x, y) = Vavg(xc ,yc )(i ), ∀(x, y) ∈ Pi ,
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∀Pi ∈ P (xc , yc ) and i ≠ i0. (6)

However, if the center pixel is present in such a partition (cen-
ter partition), all the pixels in that center partition are assigned
the Gaussian function’s value at the center pixel [Refer Fig-
ure 3b]. Assuming the center partition to be Pi0, that is,
Pi0 ∈ P (xc , yc ) and (xc,yc ) ∈ Pi0, the mask value assigned is:

Maski0,(xc ,yc )(x, y) = G (xc , yc ), ∀(x, y) ∈ Pi0. (7)

Here, the value at the center pixel is allotted instead of the
average to create a greater difference in values between the
neighboring partitions and the center one, resulting in a vivid
local structure representation. For a partition having no inter-
section with the Gaussian function, a zero mask value is
assigned to that partition.

Maski,(xc ,yc )(x, y) = 0, ∀(x, y) ∈ Pi , ∀Pi ∉ P (xc , yc ). (8)

∙ An example mask obtained from the above-mentioned pro-
cedure is represented in Figure 3c. The mask obtained as
illustrated in Figure 3c is by a procedure that emphasizes
color indiscernibility /similarity among the elements in a par-
tition, without considering a partition’s spatial extent. How-
ever, to determine the informativeness or saliency of a pixel,
the spatial distance of the pixel from the center pixel is also
important [34]. Larger the spatial spread of a neighboring par-
tition farther would be the most distant pixels in it from the
center pixel. Thus, a smaller weight is multiplied to a neigh-
boring partition’s mask value when the spatial extent of that
partition is farther from the center pixel. Hence, this inverse
relation for spatial proximity analysis is implemented as:
Let for a pixel (x, y), the rightmost and leftmost values of a
partition Pi in terms of x and y be x

Pi
r , x

Pi

l
, y

Pi
r , y

Pi

l
.

With respect to the center pixel, let a partition’s extent mea-
sure be

Di = 1 −
Ti

(M + N )
∀ i & i ≠ i0, (9)

where Ti = max[|||xc − x
Pi

l

|||,
|||xc − x

Pi
r
|||]+

max[|||yc − y
Pi

l

|||,
|||yc − y

Pi
r
|||], ∀ i and i ≠ i0.

Here, M+N (the maximum possible extent) is considered for
normalization to ensure that Di , ∀i lie in [0,1]. The weighted
value of the mask is:

Maski,(xc ,yc )(x, y) = Vavg(i ) × Di ,

∀(x, y) ∈ Pi , ∀ Pi ∈ P (xc , yc ) and i ≠ i0. (10)

Combining (6), (8) and (10), the mask obtained at (xc , yc ) for
a Gaussian function having a 𝜎 is denoted as:

Mask𝜎(xc ,yc )(x, y) = Maski,(xc ,yc )(x, y),

∀ (x, y) ∈ Pi ∀ i ∈ {1, 2, … ,N }. (11)

Finally, considering multiple masks obtained using Gaus-
sian functions with different standard deviations, at location
(xc , yc ), the center-surround operator mask is obtained as
follows:

CSMask
𝜎k,𝜎t

(xc ,yc )(x, y) =
Mask

𝜎k

(xc ,yc )(x, y)

∑
(x,y)∈L

Mask
𝜎k

(xc ,yc )(x, y)
−

Mask
𝜎t

(xc ,yc )(x, y)

∑
(x,y)∈L

Mask
𝜎t

(xc ,yc )(x, y)
, 𝜎t > 𝜎k. (12)

At (xc , yc ) location, the obtained saliency is:

S𝜎k,𝜎t
(xc , yc ) =

||||||

M∑
x=1

N∑
y=1

CSMask
𝜎k,𝜎t

(xc ,yc )(x, y) × I (x, y)
||||||
. (13)

Now, considering the saliencies calculated for all the different
values of the pair (𝜎k, 𝜎t ) (all scales), we compute the region
saliency at all image pixels as

S (xc , yc ) =
∑
𝜎k,𝜎t

S𝜎k,𝜎t
(xc , yc )

max(xc ,yc )S𝜎k,𝜎t
(xc , yc )

. (14)

The above computed saliency can be referred to as the spatio-
range saliency, as it is based on both spatial analysis and color
(range) similarity. In (14), we see there is a normalization
operation applied to the saliency computed at each scale. This
normalization approach ensures that the computed saliency
at a pixel is relative to the saliencies at all the other pixels.
This normalization also makes the saliency quantities being
added in (14) to be in the same range [0, 1], making the addi-
tion across scales suitable.
An image pixel having a spatio-range saliency value S>0 is
taken as salient, and therefore, forms a part of the salient
region. Thus multiple salient region detection is achieved. We
are able to work with the trivial threshold operation of S>0
because our locally adaptive center-surround mask precisely
and uniformly highlights only multiple object regions pre-
serving their boundaries. Some noteworthy characteristics of
our operator mask generation to get multiple salient objects
are:

∙ Mask values at pixels in a partition are identical, and hence,
such values in partitions capture the structure of local homo-
geneous regions, making our masks adaptive to the image’s
local structure.

∙ The Gaussian functions taken to generate the masks can be
related to the approximate scales of the objects which should
be detected as salient. Thus the mask can be adapted such that
it is application-oriented ensuring appropriate performance
in specific multiple objects scenarios.
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∙ The proto-object partitioning of an image results in pre-
cise boundaries of detected salient regions aiding accurate
object localization. As the results in Figure 8 show later, avail-
ability of precise boundaries after salient region detection
as good as given by our proposed approach has not been
achieved before.

Comprehensive quantitative and qualitative evaluation of our
multiple salient region detection approach is presented in Sec-
tion 6.1, which is compared to the state-of-the-art in salient
region detection. In that while applying our approach on images
from the standard databases and our industrial object image set,
we do not consider application-oriented masks to uphold fair-
ness.

We also demonstrate the applicability of our multiple salient
region detection approach as a module in a robotic manipulation
system performing pick and place operation through an exam-
ple, where we consider application-oriented masks with known
object scales. To further improve the detection accuracy during
the robotic manipulation, we consider the detection and sepa-
ration of shadow partitions from the detected regions which is
described in the next section.

4 AUTONOMOUS ROBOTIC
MANIPULATION: A NEW SHADOW
DETECTION METHOD

This is the first among the two sections that describes our
autonomous robotic manipulation system driven by the mul-
tiple salient region detection approach proposed in Section 3.
Here, we describe our novel fast shadow detection method,
which follows after the multiple salient region detection module
(see Figure 1). Salient regions detected by our local structure-
aware approach may contain partitions of object shadow on
the background around objects, which tend to act as object
partitions. The presence of such shadow partitions may intro-
duce errors during object localization. Thus, apart from accu-
rate boundary detection through proto-object partitioning,
shadow detection is also required to ensure proper object
localization.

We draw our motivation from the vast studies available
related to shadow detection. According to literature, [69, 79],
chromaticity based methods are the fastest among all, which
motivated us to propose a simple hue-based shadow detection
technique. Chromaticity based methods considering pixel-level
comparisons are prone to noise [80]. Hence, we consider a com-
parison of hue distributions of the regions (proto-object parti-
tions) for the same.

4.1 Proposed method of shadow detection

We propose a hue histogram-based approach to detect shadow
partitions within salient regions obtained from our multi-

ple salient region detection method. Our shadow detection
approach is obviously applied to the object, shadow, and back-
ground partitions that may be present only within the salient
regions (not the entire image). Object and background parti-
tions usually have different hue content, which can be used to
separate them.

The separation of the shadow partitions from the object
partitions using our novel approach is depicted in Figure 4.
Object partitions are expected to have similar hue content. A
shadow partition would stand out from them, as the shadow
of the object falling on the background is most likely to have
hue content (but not intensity value) similar to the background.
Note that, if a shadow (of something else) falls on an object,
then the relevant partition is most likely to have hue content
similar to that object. Therefore, this partition would not be
separated, and rightly so, as it is indeed a partition within the
object. Once we separate the shadow partitions within a salient
region from the object partitions, only the latter shall be used to
get an improved estimation of object location. Note that, this
does not require shadow removal, but only separation of the
partitions.

In our approach, first, image parts corresponding to each
detected salient region are extracted from the input RGB image.
These image parts may contain objects only, objects along
with their shadows, or very rarely, objects, their shadows, and
background. RGB to HSV conversion is performed in these
image parts to decouple chromaticity components from inten-
sity (value). For each partition in such an image part, a his-
togram of the hue component (bins: [0◦, 1◦, … , 359◦]∕360◦) is
obtained as shown in Figure 5. The similarity between each pair
of partitions is obtained by taking Bhattacharyya distance [81]
between their hue distributions. We choose Bhattacharyya dis-
tance as it is symmetric and has been popularly used [82]. The
Bhattacharyya distance DB between two hue distributions p, q
over same domain X is:

DB (p, q) = − ln B, B =
∑
x∈X

√
p(x )q(x ), (15)

where B is the Bhattacharyya coeficient.
A fully connected undirected graph 𝔊 = ( ,  ) is con-

structed by taking each partition in a salient region as a node
k after getting the distance DB between each pair (k, l ) of
partitions. The distance represents the weight at the edge kl

between a pair of nodes. Then, graph partitioning using the
normalized cut method [83] is applied to divide all the parti-
tions present in a detected salient region into two sets: one is
the object set containing object partitions only, and another one
is the non-object set containing shadow and background par-
titions (as the hue of object’s shadow and background is simi-
lar). Among the two obtained sets, the one where the average
saliency value of the pixels is higher is considered the object set.
For the object set, the average saliency value would be higher as
compared to the shadow and background set mainly due to our
spatial proximity analysis.
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FIGURE 4 Proposed approach for detecting shadow partitions from salient regions

FIGURE 5 An example of hue histograms of (a) detected shadow partition. (b) Background partition. (c) and (d) Detected object partitions

5 AUTONOMOUS ROBOTIC
MANIPULATION: OTHER OPERATIONS

This is the second among the two sections that describes our
autonomous robotic manipulation system. Here, we describe
the other operations performed based on techniques existing
in literature after the proposed multiple salient object detection
and shadow detection approaches (see Figure 1).

Our proposed system (salient region and shadow detec-
tion) extracts a set of salient regions corresponding to multi-
ple objects present in a scene, preserving their accurate bound-
aries, making it suitable for use in autonomous robotic manip-
ulation. Although our system is applicable for a wide vari-
ety of robotic manipulation operations, to demonstrate such
use of our approach, we consider the application of picking

and placing industrial components by a robot. For automatic
robotic pick and place, the orientation and location of all objects
must be obtained in addition to their recognition after suc-
cessful detection. After salient region detection, our system can
be integrated with any widely used recognition techniques. We
apply two well-known matching based recognition techniques,
namely, shape and feature point matching. Here, the matching
techniques are used since we have prior knowledge of all the
objects to be manipulated in an application. Template match-
ing has been used widely for recognition [63] and to obtain
orientation details. But, as stated earlier, applying matching
over the whole image for recognition is computationally expen-
sive. In our system, matching is performed only at the regions
detected as salient using our approach, which is designed to
detect all objects that shall be manipulated as important/salient.
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FIGURE 6 (a) Extraction of SIFT key points at the regions detected as salient, (b) Matches of SIFT key points between an image template and an object
detected as salient, (c-f) Matching of the shape context between templates of objects (c) and (d), and the obtained salient regions (e) and (f) at optimum matching
cost. The estimated angles at optimum matching cost are 7◦ and 44◦ respectively [27]

Our system, makes recognition more efficient/faster despite the
added “burden” of saliency detection. Additionally, after sep-
arating shadow, performing matching for recognition only at
the regions detected as salient increases the rate of recognition
by reducing false positives in background and shadow regions.
Upon successful detection and recognition of multiple salient
objects, the robotic manipulator can proceed to manipulate the
objects to perform specific tasks.

5.1 Recognition of objects by feature point
matching

As one of the two ways of object recognition, we use scale-
invariant feature transform (SIFT) for the recognition of objects
to be manipulated by a robot. Many state-of-the-art methods
[2, 29] have used SIFT-based object recognition for robotic
manipulation. In their methods, after extracting feature points
along with their feature descriptors from an input image, nearest
neighbor matching is done with that of the feature descriptors
of stored images to find the best match. As this feature match-
ing is done across the whole image, the possibility of false posi-
tive matches arising due to background feature points increases.
Contrary to that, in our proposed method there is the least pos-
sibility of such false positive matches as the extraction of the
feature point, and the matching is performed only at regions
detected as salient (see Figure 6a). Further improvement in ini-
tial matching is achieved by Hough transform clustering [84]
(see Figure 6b) and maxima among the feature points in the
Hough space is considered for object pose estimation using
RANSAC homography [85].

5.2 Recognition of objects by shape
matching

We considered the shape matching of [86] as the second method
of template matching in our system. As our proposed system

can preserve proper boundaries (shape) of multiple detected
salient regions, shape information can be exploited for recog-
nition of the objects. In this method of matching, a log polar
histogram is measured by considering all the extracted sampled
edge points’ coordinates with reference to a specific edge point,
which is known as origin. This log polar histogram is denoted
as the shape context of the considered origin point. After taking
the shape contexts of detected salient objects and the template,
the optimum matching cost which is the smallest chi-square test
statistic between the obtained shape contexts is considered for
the matching.

All edge points X in a detected salient region are rotated in-
plane by a same angle 𝜃 using the 2D rotation matrix.

The best transformation parameter 𝜃 between the edge
points of the template and the object in the detected region is
given by

𝜃 = arg min
𝜃

TC (U ,F (X ; 𝜃)), 0◦ ≤ 𝜃 < 360◦, (16)

where U is the set of all sampled edge points of the template
image, TC represents the total cost of shape context matching
between sampled edge points of a template image and a detected
region, and F (X ; 𝜃) is obtained using the 2D rotation matrix.
Figure 6c–f depicts the matching of candidate points between a
template and a region detected as salient corresponding to min-
imum matching cost.

5.3 Automated mechanical pick and place

During the aforesaid recognition of an object through tem-
plate matching, the object’s orientation, as an inherent part of
matching, and the object’s location, as the centroid of the rec-
ognized object within the salient region, are obtained. After
detection, recognition, and localization of all objects, which also
yields their orientations and locations, the height of each object
is extracted from the already available computer-aided design
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FIGURE 7 Flowchart of the strategy for robotic pick and place

(CAD) model. Now robotic manipulators can pick up objects
one by one from the obtained locations at the estimated orien-
tation. As in the case of any automated operation, our robotic
manipulator does the various operations through a well-defined
strategy as shown in Figure 7, which especially helps to ensure a
collision free pick and place operation or motion planning. The
robotic manipulator follows a pre-defined motion sequence for
proper handling of each part without collision [87]. The manip-
ulator moves from the initial/ home position to the estimated
location of the objects to be picked up. However, it maintains a
safe height while in motion to avoid a collision. Then, it moves
down to the grasp height of the object, then moves up to the
safe height after grasping which is followed by a movement
towards the jig/ base part (Figure 12a). All these manipula-
tor movements are controlled using a robot controller interface
called digimatrix operated through NI LabVIEW graphical pro-
gramming environment.

6 RESULTS AND DISCUSSION

In this section, the evaluation of our proposed robotic manipu-
lation system is presented in three folds. Section 6.1 presents the
evaluation of our multiple salient region detection algorithm and
its effectiveness through comparisons with the state-of-the-art
salient object detection approaches. This is followed by the pro-
posed shadow detection algorithm’s evaluation in Section 6.2.1,
and in Section 6.2.2, we demonstrate the efficiency and capabil-
ity of our entire system for vision guided robotic pick and place
operation in terms of localization, angular error, detection and
recognition rates, and processing speed.

6.1 Evaluation of multiple salient region
detection

We evaluate our multiple salient region detection method by
using images with multiple salient objects. As this evaluation
is regarding generic salient region detection, just like [3], we
consider a fixed set of standard deviations (object scales are
not known) of the multiple Gaussian functions involved in our
approach, which are {3, 5, 7} pixel widths for the center Gaus-
sian function and {19, 23, 29} pixel widths for the surround
Gaussian function. These parameters are stated for the image
size 256 × 256 and are to be scaled linearly for larger or smaller
sizes of images. An analysis of the sensitivity of these parame-

ters is given in Appendix A.3. For the evaluation, we choose the
SED2 database [88], GIT database [89], and SalMoN database
[90] as these standard databases predominantly contain images
with more than one salient object. Along with this, we also con-
sider images of the YCB benchmark [91] and on our collec-
tion of images, which are related to robotic manipulation con-
taining multiple objects. For comparison, several existing salient
object detection algorithms like HS [34], FT [92], MB [42], SEG
[93], LPS [94], SMD [95], MIL [96], NLDF[47], BASNet[6],
CPD[48], SCR[97], SPD[98], LDF[99], MSFNet[53] and SCWS-
SOD[54] with publicly available implementation codes produc-
ing state-of-the-art results are considered. Among these, NLDF,
BASNet, CPD, SCR, SPD and LDF, MSFNet and SCWSSOD
are latest deep learning-based models. The deep learning-based
algorithms are implemented by using GPU NVIDIA 2080 Ti
(11GB) in a machine with a RAM of 64 GB. The other meth-
ods not involving deep learning are implemented in a machine
with an Intel i5 processor (CPU) with 8 GB RAM. Along with
the qualitative and quantitative evaluation, the computation time
of different methods is also considered. For the deep learning-
based methods, the pre-trained models provided by the corre-
sponding authors have been used.

6.1.1 Qualitative evaluation and discussion

The salient regions detected by the different methods in a few
images from the standard databases and of industrial objects
are shown in Figures 8 and 9, respectively. Images of Figure 8
are from the SED2 database (first five rows), GIT database
(sixth and seventh row), and SalMoN database (the rest). The
last four images of Figure 9 are from the YCB benchmark
and the first five images of Figure 9 are that of our collec-
tion of industrial objects. As can be seen, our method con-
sistently detects multiple salient regions with accurate bound-
aries (Figures 8 and 9), and generates accurate salient region
maps even when very small objects are present (third and
fourth images of Figure 9) and objects have low contrast
with the background (first two images of Figure 9). No other
approach, including the ones based on deep learning, is as con-
sistent as ours in collectively detecting multiple salient image
regions with accurate boundaries. To check the robustness of
the proposed approach in terms of multiple salient object detec-
tion in images with low illumination, with objects having sim-
ilar shape, size, and color, and with objects viewed from an
oblique angle, results on such images are shown in Figure A.3 in
Appendix A.2.
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FIGURE 8 Visual comparison of detected salient regions obtained by different state-of-the-art algorithms on images from SED2 database [88] (First five
rows), GIT database [89] (6th and 7th row) and SalMoN database [90] (the rest). (a) Input images; (b) ground truth; (c) our method; (d) SEG; (e) HS; (f) FT; (g) MB;
(h) LPS; (i) SMD; (j) MIL; (k) NLDF; (l) SPD; (m) CPD; (n) SCR; (o) BASNet; (p) LDF; (q) MSFNet; (r) SCWSSOD

FIGURE 9 Visual comparison of salient regions obtained by different state-of-the-art algorithms. (a) Input images; (b) ground truth; (c) our method; (d) SEG;
(e) HS; (f) FT; (g) MB; (h) LPS; (i) SMD (j) MIL (k) NLDF (l) SPD (m) CPD (n) SCR (o) BASNet (p) LDF (q) MSFNet (r) SCWSSOD. First five images with
multiple objects are our collection of industrial objects taken from our robotic workspace and rest four are from YCB benchmark database[91]

6.1.2 Quantitative evaluation and discussion

We evaluate the performance of different salient object detec-
tion algorithms utilizing four evaluation metrics, F -measure,
mean absolute error (MAE), shuffled area under receiver oper-
ating characteristics (ROC) curve (sAUC), and shuffled F -
measure. F -measure is a quantitative measure that is often
used to evaluate the agreement between the detected regions
as binary maps and binary ground truth [23]. The salient object
detection ground truth is already binary and we binarize a com-

puted salient object map using the image dependent adaptive
thresholding proposed in [92]. By using the binary salient object
map thus obtained against corresponding binary ground truth,
we calculate precision and recall values, which are used to get a
F -measure as:

F =
2(Precision)(Recall)
Precision + Recall

. (17)

The shuffling process suggested in [100], which ensures that a
better performance is not due to any prior bias, is applied to get
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the shuffled F -measure and shuffled AUC. In the shuffling pro-
cess, for an image, its binary salient object ground truth is taken
as the positive reference and a negative reference is formed by
taking the union of the ground truths of a set of other images.
For sAUC computation, multiple thresholds are used to gener-
ate multiple binary maps from an algorithm generated saliency
map. Comparing such a binary salient object map obtained for
an image to its positive reference, the true positive rate TPR is
obtained as

TPR =
TP

P
, (18)

where TP is the true positive and P = TP + FN , with FN as
false negative, represent the number of salient pixels in the pos-
itive reference. Then, comparing the binary salient object map
to the negative reference, the false positive rate FPR is obtained
as

FPR =
TPn

Pn
, (19)

where Pn is the number of salient pixels in the negative reference
and TPn is the true positive for the negative reference. sAUC
is then obtained from the ROC calculated using the TPR and
FPR values for the multiple binary salient object maps. For shuf-
fled F -measure computation, a threshold, as suggested in [92],
is used to compute a single binary salient object map. Using this
map against the positive and the negative references, we com-
pute Recall = TPR = TP∕(TP + FN ) and Precision = TP∕(TP +
FP ), where FP = FPR × Pn, from the quantities in (18)
and (19).

Further, in the computation of F -measure or shuffled
F -measure, true negatives, which quantifies pixels correctly
marked as non-salient, are not considered. As pointed in [23],
they may favor methods that successfully assign high saliency
to salient regions but fail to reject non-salient regions over
methods that do well in both but comparatively do not assign
high saliency value to salient regions. Taking this into account,
we also consider the mean absolute error (MAE) between the
obtained salient object map (S ) normalized to [0,1] and the
binary ground truth (GT ) for evaluation. The mean absolute
error is given by:

MAE =
1

W × H

W∑
x=1

H∑
y=1

∣ S (x, y) − GT (x, y) ∣, (20)

where W and H are height and width of the salient object map
and binary ground truth images. Table 1 shows the shuffled F-
measure, sAUC, F-measure and MAE averaged over all images
in a database for all compared methods considering the stan-
dard SED2, GIT, SalMoN, YCB benchmark, and our industrial
object image databases. As can be seen, among the 20 differ-
ent cases (database and measure combinations), our approach
gives the best results in 9, which is better than any other. The

approaches LDF and SPD, which are the latest deep learning-
based methods, come distant second by producing the best
results in 3 cases. The proposed method ranks within the top
three in almost all the cases and it outperforms all the others
in terms of all the evaluation metrics on our industrial object
image set. It should be noted that while the deep learning-based
approaches such as SPD, CPD, LDF, BASNet and MSFNet do
well for a database or two, they do not outperform the pro-
posed approach’s overall performance across the 5 databases.
The superior performance of our multiple salient region detec-
tion approach is seen considering databases with all images con-
taining multiple salient objects and databases predominantly
having images with single salient objects are not considered.
Unlike many approaches in the literature, our approach not only
detects objects with high saliency but also objects with moder-
ate or lower degree of saliency in the given image at hand. Our
proposed approach is designed to detect multiple objects, and
the design does not depend on the number of objects present in
an image. On the other hand, it is difficult to obtain databases
(with ground truth) to train deep learning-based approaches
that have equal representation of images with different num-
bers of objects. This may create a class-imbalance kind of an
issue in the learning that may hinder the performance of deep
learning-based approaches for multiple salient region detection.
The performance of the learned deep models may not scale
well with change (increase) in the number of salient objects in
images. This is evident from the Figure 8 (first, second, sixth,
and ninth row images), where only a single object is detected
by most of the deep learning-based methods. Similarly, for our
industrial objects and YCB object database as shown in Fig-
ure 9 and A.3, all objects are not detected as salient by the deep
models.

Further, we compare the performance of the proposed multi-
ple salient region detection approach with recent generic object
detection techniques, YOLO and mask R-CNN [101–104],
which can detect all objects in an image. The qualitative and
quantitative results are shown in Figure 10 and in Table 3. For
YOLO, bounding boxes show the objects detected, and when
no object is detected, the output is shown as a black image in
Figure 10. Generic object detectors try to detect every object
irrespective of saliency. Although generic object detectors are
good at detecting multiple objects compared to many state-of-
the-art salient object detection approaches, their performance
in saliency detection is expected to be low as demonstrated in
Table 3.

Processing speed: The average processing time per pixel (in
milliseconds) taken to detect salient regions by the different
approaches are given in Table 2, in which only our approach
is explicitly targeted towards detecting multiple salient regions.
The number of parameters to be tuned and the simulation plat-
form for the different approaches are also presented in Table 2.
As can be seen, the different salient object detection approaches
are implemented in different platforms using different tools,
and hence, most of them are not comparable one-to-one. How-
ever, it is clearly evident that the proposed approach is not com-
putationally expensive.
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FIGURE 10 Visual comparison of detected salient regions obtained by different state-of-the-art algorithms target detection methods on images from different
databases. (a) Input images; (b) ground truth; (c) our method; (d) mask R-CNN; (e) YOLO v2; (f) YOLO v3; (g) YOLO v4

TABLE 2 Computation time (millisecond/pixel) [considering multiple images] and number of parameters of the different salient region detection methods
implemented in different platforms. Only testing times (GPU) are shown for the machine/deep learning-based methods

Device Ours SEG HS FT MB LPS SMD MIL NLDF SPD CPD SCR BASNet LDF MSFNet SCWSSOD

Time (mSec) CPU 0.07 0.193 0.013 0.0003 0.0005 0.005 0.006 0.375 - - - - - - - -

GPU - - - - - - - - 0.0004 0.0002 0.0002 0.0004 0.0003 0.0002 0.0003 0.0002

Number of
parameters

<10 <10 <10 <10 <10 <20 <10 <15 4 × 107 7 × 107 3 × 107 8 × 107 2 × 107 8 × 107 3 × 107 6 × 107

Code matlab matlab .exe .exe .exe matlab matlab matlab tensorflow pytorch pytorch pytorch pytorch pytorch pytorch pytorch

6.2 Evaluation considering automatic
robotic manipulation

6.2.1 Proposed shadow detection approach
performance

Although the boundaries of the salient regions detected by
our technique are updated using our proposed shadow detec-
tion method (see Section 4), we consider the proposed shadow
detection approach separately here to evaluate it. We consider
both qualitative and quantitative evaluations of the proposed
shadow detection technique along with its utility in our case.
Figures 11a and 11b show detected salient regions with shadow
and regions obtained after shadow separation, respectively for
objects to be manipulated by an industrial robot. The main
objective of the proposed shadow detection technique is to
improve localization accuracy. Thus, for quantitative evaluation,
we consider a reduction in localization error (as a quantitative

measure) after applying the proposed shadow detection tech-
nique to the regions detected as salient and the results are pre-
sented in Tables 4 and 7, and Figures 13 and 14, which we dis-
cuss later in the following Section 6.2.2.

6.2.2 Automated robotic pick and place
performance

Our saliency based robotic pick and place manipulation is
demonstrated by a system comprising of a 6-axis industrial
robot manipulator (Yaskawa Motoman MH5) which has a
two finger pneumatic gripper, a robot control interface called
Digimetrix, and a robot controller having open software archi-
tecture. The vision system is equipped with an overhead cam-
era that is used to capture images of objects in the robotic
workspace along with a computer with a data acquisition
board. A 1.3 MP resolution Basler acA1300-22gc GigE camera
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TABLE 3 Comparison of the proposed salient object detection method with advanced target detection methods using shuffled F-measure, sAUC, F-measure
and MAE on SED2, GIT, SalMoN, YCB and our industrial object image databases containing images with multiple salient objects. The best result for each of the 20
cases are shown in magenta

Database Parameter Our method

mask R-CNN

2017

YOLO v2

2017

YOLO v3

2018

YOLO v4

2020

SED2 Shuffled F-measure 0.7505 0.4897 0.3762 0.3864 0.4197

sAUC 0.7778 0.6595 0.5981 0.6105 0.6315

F-measure 0.7987 0.5554 0.4800 0.3983 0.4211

MAE 0.0380 0.1535 0.4179 1.3916 1.5517

GIT Shuffled F-measure 0.6088 0.4887 0.1842 0.2716 0.3723

sAUC 0.6836 0.5691 0.5280 0.4988 0.5564

F-measure 0.5380 0.4376 0.4229 0.2149 0.3658

MAE 0.1721 0.3121 7.2514 6.7277 7.4512

SalMon Shuffled F-measure 0.8054 0.7031 0.4923 0.4629 0.6278

sAUC 0.8215 0.7727 0.6535 0.5214 0.7203

F-measure 0.7881 0.7203 0.4532 0.3834 0.4957

MAE 0.0449 0.1105 8.5325 5.8812 5.5746

YCB Shuffled F-measure 0.6275 0.5888 0.3475 0.3017 0.4905

sAUC 0.6209 0.5700 0.5023 0.5224 0.5265

F-measure 0.8195 0.7384 0.5720 0.4417 0.3718

MAE 0.1257 0.2376 2.3209 2.2512 3.9795

Our industrial object image Shuffled F-measure 0.7737 0.3980 0.1416 0.1524 0.2220

sAUC 0.7868 0.6223 0.5131 0.5053 0.6118

F-measure 0.8339 0.4758 0.3145 0.2115 0.2428

MAE 0.0350 0.0765 8.2259 1.3754 8.8698

FIGURE 11 (a) First row: Objects present in regions detected salient, Second row: Objects after separating detected shadow partitions (b) (i) and (iii) Objects
present in regions detected as salient before and after shadow detection, (ii) and (iv) Regions detected as salient before and after shadow detection
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TABLE 4 Evaluation of detection performance using the proposed method for all set of objects from Figure 9 (images 2–5). Each image corresponds to an
object set

Salient region detection Salient region + Shadow detection

Positional error (cm) Positional error (cm)

Objects from Figure 9 X Y

Detection

rate (%) X Y

Detection

rate (%)

Set2 0.23±0.03 0.18±0.05 100 0.09±0.06 0.08±0.05 100

Set3 0.13±0.03 0.21±0.06 100 0.08±0.05 0.11±0.06 100

Set4 0.12±0.02 0.14±0.03 100 0.10±0.03 0.09±0.04 100

Set5 0.11±0.04 0.14±0.06 100 0.11±0.04 0.13±0.06 100

TABLE 5 Evaluation of recognition performance using the proposed method for all set of objects from Figure 9 (images 2-5). Each image corresponds to an
object set [27]

Recognition by SIFT Recognition by Shape matching

Objects from Figure 9 Angular error (%) Recognition rate (%) Angular error (%) Recognition rate (%)

Set2 2.3±0.5 100 1.0±0.4 100

Set3 3.2±0.3 70 0.9±0.3 100

Set4 5.1±0.7 41 2.1±0.2 100

Set5 3.4±0.7 82 1.4±0.6 100

TABLE 6 Evaluation of performance of the conventional approach for all set of objects from Figure 9 (image 2-5). Each image corresponds to an object set.
[NA-Not Applicable] [27]

Detection and Recognition by SIFT Detection and Recognition by Shape matching

Positional error (cm) Positional error (cm)Objects

from

Figure 9 X Y

Detection

rate (%)

Angular

error (deg)

Recognition

rate (%) X Y

Detection

rate (%)

Angular

error (deg)

Recognition

rate (%)

Set2 0.48±0.06 0.35±0.03 NA 4.8±0.3 100 0.19±0.06 0.21±0.08 NA 1.8±0.4 100

Set3 0.62±0.02 0.74±0.06 NA 6.4±0.5 41 0.21±0.02 0.27±0.06 NA 2.1±0.6 100

Set4 0.57±0.04 0.46±0.05 NA 3.7±0.7 60 0.19±0.08 0.16±0.03 NA 1.9±0.3 100

Set5 0.33±0.07 0.41±0.08 NA 5.4±0.7 70 0.14±0.03 0.31±0.03 NA 2.1±0.6 100

TABLE 7 Detailed evaluation of pick and place performance using the proposed methods for specific objects /parts (parts in image1 of Figure 9, Figure 12a).
[NA-Not Applicable]

Proposed method (saliency +shadow+ recognition)

Saliency detection Saliency + shadow detection Shape matching SIFT matching

Positional error (cm) Positional error (cm)
Assembly

parts X Y

Detection

rate (%) X Y

Detection

rate (%)

Angular

error

(deg)

Recognition

rate (%)

Angular

error

(deg)

Recognition

rate (%)

Object1 0.21±0.05 0.18±0.045 100 0.06±0.02 0.04±0.03 100 1.2±0.5 100 3.2±0.4 100

Object2 0.16±0.035 0.21±0.05 100 0.09±0.03 0.07±0.02 100 0.9±0.3 100 2.1±0.6 100

Object3 0.15±0.03 0.16±0.035 100 0.09±0.04 0.11±0.04 100 0.6±0.2 100 3.6±0.2 100

Object4 0.14±0.049 0.23±0.055 100 0.10±0.05 0.12±0.06 100 0.8±0.4 100 2.5±0.5 100

Object5 0.24±0.06 0.21±0.052 100 0.08±0.03 0.09±0.05 100 1.1±0.3 100 1.9±0.7 100

Object6 0.16±0.035 0.19±0.04 100 0.12±0.04 0.15±0.06 100 1.2±0.6 100 2.2±0.5 100
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FIGURE 12 (a) Parts to be assembled. (b)–(d) Images of operation[27]. The demo videos can be found at https://github.com/sudiptabhuyan1/SAMSOD

FIGURE 13 Histogram of positional error along X-axis (a) before
shadow detection, and (b) after applying shadow detection at detected salient
regions

FIGURE 14 Histogram of positional error along Y-axis (a) before
shadow detection, and (b) after applying shadow detection at detected salient
regions

powered by Sony ICX445 CCD sensor is used along with a 6mm
focal length Edmund Optics lens. The mapping between image
coordinates and the robot’s real world coordinates is done by
calibrating the camera. All computations have been performed
with Matlab R2016b running on an 8GB RAM, intel core i5
processor system clocked at 3.30GHz and the obtained param-
eters (X, Y, Z, angle) are exported to the robot control interface
(Digimetrix) through LabVIEW. The image processed is of size
1078×958.

In our pick and place experiment, we consider six compo-
nents as shown in Figure 12a. Here, we have considered regular
sized objects as they can be easily manipulated by our two finger
gripper. The robot performing various stages of pick and place
operation based on our proposed method is demonstrated in
Figures 12b, c, and d.

Some specifics of our approach applied to the pick and place
operation are:

∙ The center-surround operations based detection of multiple
salient objects considers Gaussian functions having five dif-
ferent standard deviations (𝜎), which are chosen according to
the approximate object sizes.

∙ The order in which the objects are to be placed on the jig
/base part decides the sequence of considering the different
templates for recognition.

∙ A few parameters of SIFT algorithm [105] are modified to
get sufficient key points after experimentation. The threshold
value for accurate key point localization is taken as 0.02. Simi-
larly, the distance ratio which is the ratio between the distance
of the closest neighbor to the second closest one is taken
as 1.5.

In unstructured robotic workspaces, our algorithm is
designed to deliver accurate and fast object localization. The
first five images of Figure 9 captured in our environment hav-
ing multiple objects validate the said capability of our algorithm.
The figure also shows the multiple salient object detection accu-
racies. As can be seen, we perform the test by taking largely dis-
tinct mechanical components with varying shapes and sizes. In
our system, we consider the use of the two recognition tech-
niques (see Section 5) to validate their suitability at the detected
multiple salient regions. To demonstrate the accuracy of angle
and position obtained, 25 observations of distinctly shaped and
positioned objects in the robotic workspace are recorded and
illustrated in the first five images of the figure. These observa-
tions are taken from five different images /sets of objects and
five observations per image /set changing object positions. The
values pertaining to correctly detected and recognized objects
with the estimated orientation (Angular error) and localization
(X, Y) error are demonstrated in Table 4. The values provided
in the table correspond to each set of objects. The first column
of Table 4 denotes the localization error at the detected mul-
tiple salient regions only. The second column of Table 4 shows
the improvement in localization error after applying our shadow
detection algorithm at the detected multiple salient regions,
which we had mentioned earlier. The errors are calculated by
taking the absolute difference between the measured values and
actual values.

https://github.com/sudiptabhuyan1/SAMSOD
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FIGURE 15 Histogram of (a) angular error after applying SIFT matching
at detected regions, and (b) angular error after applying shape matching at
detected regions

In addition, the localization and orientation error histograms
for all objects (objects in first five images of Figure 9 kept
at varying positions) are shown in Figures 13, 14 and 15.
Figure 13a, b shows the localization errors along the x-axis
before and after applying shadow detection technique at the
regions detected as salient and Figure 14a, b shows them
along Y-axis before and after applying the shadow detec-
tion technique. Here, only localization error histograms are
shown, as our primary reason for separating shadow parti-
tions is to improve localization accuracy. Figure 15 represents
angular errors obtained after applying SIFT and shape match-
ing for recognition only at the regions detected as salient,
respectively.

To emphasize the utility of our saliency detection approach
for robotic manipulation, we do a performance comparison
between our system and a system where multiple salient region
detection is not used (termed as conventional method). The
basic difference in the systems is that in our system recognition
is executed only at the regions detected as salient, whereas in
the conventional method the recognition techniques are applied
over the entire image. Table 6 summarizes localization and angu-
lar errors, and recognition rates when feature point and shape
based recognition techniques are applied over the whole image.
Similarly, the error histograms for recognition by SIFT and
by shape matching without considering saliency (conventional
method), are shown in Figures 16 and 17, respectively.

Additionally, we have taken 20 observations where we have
placed the objects at various orientations and positions in
the robotic work envelope. All the above discussed evaluation
parameters are computed considering the 20 observations for
each object in Figure 12a (also the shown first image of Fig-
ure 9) that is shown being manipulated by the robotic arm.
Table 7 summarizes the localization error for the detected
salient regions with and without considering shadow detection.
Angular errors obtained by SIFT and shape based matching
techniques are also summarized in Table 7. Table 8 represents
the error values obtained using conventional method for objects
being manipulated by the robotic arm.

Processing speed: Consider the computation times given in
Table 9. It lists the time taken to perform each step in our
approach for robotic pick and place operation, and the total
time taken leading to the recognition as well. As can be seen,
among the various components of our approach, shadow detec-
tion takes only a fraction of time and the most time is consumed

by the shape matching at the salient region. The gain in effi-
ciency (total time to recognition) are in the ratio of 0.36:1 for
ours (saliency detection + shadow detection + SIFT matching)
to conventional SIFT matching and in the ratio of 0.0038:1 for
ours (saliency detection + shadow detection + shape matching)
to conventional shape matching.

6.2.3 Discussion

The advantage of employing our proposed multiple salient
region detection method is the extraction of multiple objects
with exact proper boundaries, which is crucial for their robotic
manipulation. Fast location and shape information extraction
from objects becomes much easier due to the use of our
approach. Summing up the results of the robotic manipulation
experiments in Tables 4–8, and Figures 13–17, we conclude
that multiple salient region detection can be effectively and suc-
cessfully used in robotic pick and place by making the exist-
ing object recognition techniques more efficient without com-
promising on performance. As salient regions refer to probable
object regions, any recognition technique can be used only at
the regions detected as salient instead of on the whole image
making the overall system faster and more accurate. This paper
shows that the concept of utilizing salient region detection for
quick robotic manipulation in an unstructured environment is
very pertinent and viable. We observed a few issues that are
outlined below, which can be addressed to enhance the perfor-
mance further.

∙ Feature matching based recognition was unable to distinguish
between a few objects which were very similar in texture /fea-
ture, although they were detected correctly by our approach.
Use of a recognition approach with higher inter-object dis-
crimination capability post our salient region detection may
help.

∙ A workspace with varying illumination at different areas
results in intra-object color variations, which in turn reduces
recognition rate. Proper illumination or application of an illu-
mination invariance method can help.

∙ In case of occlusion, salient region detection and shadow
detection can be done successfully. However, object localiza-
tion and recognition through template matching can be erro-
neous depending upon the percentage of overlapping of the
objects. The use of multiple cameras and/or depth sensors
can prove beneficial in such cases.

Another example of robotic pick and place operation using the
proposed multiple salient region detection and shadow detec-
tion approaches is shown in Appendix A.1, where the camera is
at a different point of view.

Further, the algorithm of implementing the proposed mul-
tiple salient region detection and shadow detection approaches
for the pick and place operation are shown in Appendix A.4
along with the algorithm to perform the related robotic
manipulation.
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FIGURE 16 Histogram of (a) positional error along X-axis, (b) positional error along Y-axis, and (c) angular error by conventional SIFT matching

FIGURE 17 Histogram of (a) positional error along X-axis, (b) positional error along Y-axis, and (c) angular error by conventional shape matching

TABLE 8 Detailed evaluation of pick and place performance using the conventional method for specific objects /parts (parts in image1 of Figure 9,
Figure 12a). [NA-Not Applicable] [27]

Conventional methods

Shape matching SIFT matching

Positional error (cm) Positional error (cm)
Assembly

parts X Y

Detection

rate (%)

Angular

error (deg)

Recognition

rate (%) X Y

Detection

rate (%)

Angular

error (deg)

Recog.

rate(%)

Object1 0.25±0.06 0.27±0.05 NA 2.4±0.6 100 0.383±0.03 0.283±0.03 NA 3.5±0.5 100

Object2 0.18±0.04 0.23±0.05 NA 1.6±0.4 100 0.29±0.05 0.31±0.07 NA 2.7±0.2 100

Object3 0.29±0.06 0.24±0.05 NA 1.8±0.5 100 0.28±0.05 0.35±0.04 NA 3.3±0.6 100

Object4 0.22±0.03 0.29±0.02 NA 2.3±0.6 100 0.31±0.04 0.23±0.06 NA 3.6±0.4 100

Object5 0.31±0.05 0.38±0.06 NA 1.9±0.4 100 0.32±0.03 0.41±0.05 NA 2.9±0.5 100

Object6 0.20±0.06 0.32±0.07 NA 3.4±0.3 100 0.26±0.05 0.27±0.04 NA 2.9±0.3 100

6.3 Summary

This subsection highlights the goals of our proposal and the
results achieved, based on the qualitative and quantitative analy-
ses performed earlier in this section.

Consider the following summary of our approach with
respect to its goal and the achieved results:

∙ Our first goal is to detect multiple salient objects. The
proposed method is tested on databases containing images
with multiple salient objects and the achieved results
are presented in Table 1 and in Figures 8, 9, 10, A.3,
and A.4. The results demonstrate the effectiveness of
the proposed approach in detecting all salient objects in
images.

TABLE 9 Computation time (milliseconds/pixel) of the proposed pick and place system, and the conventional matching based techniques

Proposed system (Total time: 0.176 / 0.266)

Recognition Conventional method (total time)

Time (mSec) Saliency detection Shadow detection SIFT Shape matching Shape matching SIFT matching

0.07 0.006 0.10 0.19 69.8 0.5
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∙ Our second goal is to preserve object boundaries accurately
for proper localization during robotic manipulation. The
qualitative results shown in Figures 8, 9, 10, A.3, and A.4
depict that we have achieved the same.

∙ Our third goal is to eliminate the effect of shadow in the
detection and localization of objects in a robotic environ-
ment. This is achieved by proposing a fast and simple hue
based shadow detection and the effectiveness of the tech-
nique is shown in Figures 11, 13, and 14 and Tables 4 and
7. In the mentioned tables, the quantitative values demon-
strate their effect in increasing the localization accuracy of
the objects to be manipulated by the robot.

∙ Our fourth goal is to deploy a robotic manipulation system
for pick and place operation based on our proposed multiple
salient region detection and shadow detection approaches.
Figure 7 shows the collision free strategy for safe execution
of the pick and place operation by the robotic manipulator.
Tables 4–8 and Figures 13–15 show the accuracy in perfor-
mance achieved and Table 9 depicts the execution time of
the different modules of our proposed system.

Further, a few aspects of our proposed multiple salient region
detection technique that stands out from that exist are:

∙ Our proposed multiple salient region detection algorithm
performs well for any number of salient objects present in
the scene, and therefore, can be interpreted to scale well with
a change in the number of salient objects in images.

∙ Our approach uses proto-object partitioning that helps in
preserving the precise boundaries of the detected salient
objects.

∙ In real robotic environments, our approach achieves good
performance in spite of a change in lighting conditions, pres-
ence of objects of same shape and size, presence of a large
number of salient objects and clutter etc. (see Figure A.3).

7 CONCLUSION

A novel method for detecting multiple salient regions for appli-
cation in autonomous robotic manipulation is presented. The
proposed multiple salient region detection technique is found
to be effective in comparison with the relevant state-of-the-
art when evaluated on multiple databases both qualitatively
and quantitatively in terms of F -measure, shuffled F -measure,
sAUC, and MAE. For improving localization accuracy, the
effect of the shadow is reduced by employing a new fast shadow
detection algorithm. In vision guided robotic pick and place
experiments, our proposed system has been observed to be
significantly more efficient compared to when salient region
detection is not employed. The efficiency with respect to the
rate of detection and recognition, and angular and positional
errors was also found to be better while using the proposed
method. In an unstructured environment equipped with an
industrial robot, we have established the viability and effective-
ness of our proposed multiple salient region detection based
concept.

ACKNOWLEDGEMENTS

This work was financially supported in part by Tata Steel Pvt.
Ltd., India.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ORCID

Debashis Sen https://orcid.org/0000-0002-9756-1191

REFERENCES

1. Herakovic, N.: Robot vision in industrial assembly and quality control
processes. In: Robot Vision. InTech, London (2010)

2. Collet, A., Martinez, M., Srinivasa, S.S.: The MOPED framework: Object
recognition and pose estimation for manipulation. Int. J. Rob. Res. 30(10),
1284–1306 (2011)

3. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention
for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11),
1254–1259 (1998)

4. Koch, C., Ullman, S.: Shifts in selective visual attention: Towards the
underlying neural circuitry. In: Matters of Intelligence, pp. 115–141.
Springer, Dordrecht (1987)

5. Klein, D.A., Illing, B., Gaspers, B., Schulz, D., Cremers, A.B.: Hierarchi-
cal salient object detection for assisted grasping. In: IEEE International
Conference on Robotics and Automation (ICRA), pp. 2230–2237. IEEE,
Piscataway (2017)

6. Qin, X., Zhang, Z., Huang, C., Gao, C., Dehghan, M., Jagersand, M.:
Basnet: Boundary-aware salient object detection. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 7479–7489. IEEE, Piscataway (2019)

7. Sun, J., Wang, P., Luo, Y.-K., Hao, G.-M., Qiao, H.: Precision work-
piece detection and measurement combining top-down and bottom-up
saliency. Int. J. Autom. Comput. 15(4), 417–430 (2018)

8. Židek, K., Lazorík, P., Pitel’, J., Hošovskỳ, A.: An automated training of
deep learning networks by 3D virtual models for object recognition. Sym-
metry 11(4), 496 (2019)

9. Hossain, D., Capi, G., Jindai, M., Kaneko, S.-i.: Pick-place of dynamic
objects by robot manipulator based on deep learning and easy user inter-
face teaching systems. Ind. Rob.: Int. J. (2017)

10. Lin, Y., Tang, C., Chu, F.-J., Vela, P.A.: Using synthetic data and deep net-
works to recognize primitive shapes for object grasping. In: IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 10 494–10
501. IEEE, Piscataway (2020)

11. Zhang, D., Han, J., Zhang, Y., Xu, D.: Synthesizing supervision for learn-
ing deep saliency network without human annotation. IEEE Trans. Pat-
tern Anal. Mach. Intell. 42(7), 1755–1769 (2019)

12. Loncomilla, P., Ruiz-del Solar, J., Martínez, L.: Object recognition using
local invariant features for robotic applications: A survey. Pattern Recog-
nit. 60, 499–514 (2016)

13. Tsai, C.-Y., Tsai, S.-H.: Simultaneous 3D object recognition and pose esti-
mation based on RGB-D images. IEEE Access 6, 28 859–28 869 (2018)

14. Manuelli, L., Gao, W., Florence, P., Tedrake, R.: kpam: Keypoint
affordances for category-level robotic manipulation. arXiv preprint,
arXiv:1903.06684 (2019)

15. Ciocarlie, M., Hsiao, K., Jones, E.G., Chitta, S., Rusu, R.B., Şucan, I.A.:
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APPENDICES

A.1 Pick and place experiment with changed camera

view

To check the robustness, another example of multiple salient
object detection and recognition for robotic pick and place

operation is presented with a change in camera point of view.
First, the camera is calibrated by taking multiple images of a cal-
ibration pattern. Few example images of the calibration pattern
are shown in Figure A.1a. The distances between the detected
corner points in the image, and the corresponding world points
projected into the image is called the reprojection error. The
accuracy of the calibration is estimated by taking the mean
reprojection error for the calibration images which is shown
in Figure A.1b. To improve the accuracy in world co-ordinate
estimation, lens distortion from the image is removed using the
camera parameters. The undistorted image after removing lens
distortion is shown in Figure A.2b. In the next step, the rota-
tion and translation of the camera are estimated and using those
parameters, image co-ordinates are mapped to real world co-
ordinate. In the last step, the obtained real world co-ordinates
are mapped with respect to robot co-ordinates. The experiment
is carried out using a camera (Logitech c 920, 5MP) and calibra-
tion is done using the MATLAB module.

Figure A.2 demonstrates the results of our entire proposed
system for the image containing salient objects to be manipu-
lated by the robot. Unlike the previous robotic pick and place
operation where localization of detected objects is done taking
centroid of the detected regions, in this experiment the loca-
tion and orientation information is obtained by SIFT matching.
The quantitative evaluation results for the five objects placed
as shown in Figure A.2a is presented in Table A.1. Table A.1
represents the average positional and angular errors obtained by
placing the objects shown in Figure A.2 at 15 different posi-
tions. Table A.2 represents the recognition results for conven-
tional SIFT matching technique.

A.2 Additional qualitative results

In Figure A.3, results are shown in images from our collection
of industrial objects and the YCB database, where challenging

FIGURE A.1 (a) Images for camera calibration. (b) Graph showing mean projection error for the calibration images

FIGURE A.2 (a) Original image. (b) Undistorted original image after correcting reprojection error. (c) Ground truth. (d) Detected multiple salient regions. (e)
Objects present at detected regions. (f) Objects after shadow detection. (g) Recognition by SIFT matching

https://doi.org/10.1049/ipr2.12399
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TABLE A.1 Evaluation of pick and place performance using the proposed method for all set of objects from Figure A.2

Our proposed method

Saliency detection Saliency + shadow detection Recognition by SIFT

Positional error (mm) Positional error (mm)
Objects from

Figure A.2 X Y

Detection

rate (%) X Y

Detection

rate(%)

Angular error

(%)

Recognition

rate(%)

Object1 2.9 3.3 100 2.6 3.1 100 2.7 100

Object2 3.3 3.5 100 3.3 3.7 100 3.1 100

Object3 2.7 2.4 100 2.4 2.1 100 2.4 100

Object4 3.1 2.3 100 2.7 2.1 100 3.6 100

Object5 2.7 2.2 100 2.7 2.2 100 3.4 86

Object6 4.0 4.4 100 3.9 4.3 100 2.9 73

TABLE A.2 Evaluation of pick and place performance using the conventional method for all set of objects from Figure A.2.[NA-Not applicable]

Detection and recognition by SIFT

Positional error (mm)

Objects from Figure A.2 X Y

Detection rate

(%)

Angular error

(%)

Recognition rate

(%)

Object1 3.2 3.8 NA 4.5 86

Object2 3.7 4.2 NA 3.5 93

Object3 2.9 2.6 NA 4.7 100

Object4 3.9 2.7 NA 3.2 93

Object5 3.2 2.9 NA 3.1 73

Object6 3.7 4.0 NA 5.2 66

FIGURE A.3 Visual comparison of salient regions obtained by different state-of-the-art algorithms. (a) Input images; (b) ground truth; (c) our method; (d)
SEG; (e) HS; (f) FT; (g) MB; (h) LPS; (i) SMD; (j) MIL; (k) NLDF; (l) SPD; (m) CPD; (n) SCR; (o) BASNet; (p) LDF; (q) MSFNet; (r) SCWSSOD. First seven
images with multiple objects are our collection of industrial objects taken from our robotic workspace and rest five are from YCB benchmark database[91]
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TABLE A.3 Performance evaluation of the proposed multiple salient region detection approach for SED2 and GIT databases with different set of
(center/surround) standard deviations. Image size considered here is 256×256

Database Parameters

Our method sigma set 1

(original) {3, 5,7}/{19,23,29}

Our method sigma set 2

(varied) {3, 5,7}/{21,25,29}

Our method sigma set 3

(varied) {3, 7,9}/{15,19,29}

SED2 shuffled F-measure 0.7505 0.7495 0.7482

sAUC 0.7778 0.7770 0.7781

F-measure 0.7987 0.7989 0.7976

MAE 0.0380 0.0399 0.0387

GIT shuffled F-measure 0.6088 0.6071 0.5935

sAUC 0.6836 0.6842 0.6811

F-measure 0.5380 0.5284 0.5377

MAE 0.1721 0.1769 0.1736

ALGORITHM 1 Proposed multiple salient region and shadow detection
algorithm

scenarios like low illumination, oblique viewing (camera) angle,
objects of similar shape, size and color, and objects cluttered
very close to each other exist. Similar to the observations made
in Section 6.1.1, we see that our approach is the most consistent
in detecting the multiple salient objects present.

In Figure A.4, we show some additional qualitative results on
images from the SED2, GIT and SalMoN databases. The obser-
vations in the figure leads to the similar deductions about the
superiority of the proposed approach in multiple salient region
detection as done from Figure 8 of Section 6.1.1.

A.3 Analysis of the parameters of the proposed

approach

In Section 6.1, it is stated that following [3], the standard
deviation parameters of {3, 5, 7} pixel widths for the center
Gaussian function and {19, 23, 29} pixel widths for the sur-

ALGORITHM 2 Proposed robotic manipulation

round Gaussian function are chosen to perform the proposed
multiple salient region detection. Here, we vary these param-
eters by a reasonable amount and view the change in per-
formance that depicts the sensitivity of these parameters for
generic multiple salient region detection. Table A.3 shows the
different quantitative performance measures obtained for the
images in 2 standard database, when three different standard
deviation parameter sets are applied. As can be seen, the vari-
ation in performance is almost insignificant, indicating that
the proposed multiple salient region detection approach is not
substantially sensitive to reasonable change in its parameter
values.

A.4 Algorithms involved in the proposed system

The algorithm of the proposed system is presented in this sec-
tion. Algorithm 1 describes the proposed multiple salient region
detection and shadow detection techniques. The robotic pick
and place operation is presented in Algorithm 2.
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FIGURE A.4 Visual comparison of detected salient regions obtained by different state-of-the-art algorithms on images from SED2 database [88] (First eight
rows), GIT database [89] (9th to 14th row) and SalMoN database [90] (the rest). (a) Input images; (b) ground truth; (c) our method; (d) SEG; (e) HS; (f) FT; (g) MB;
(h) LPS; (i) SMD; (j) MIL; (k) NLDF; (l) SPD; (m) CPD; (n) SCR; (o) BASNet; (p) LDF; (q) MSFNet; (r) SCWSSOD
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