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Abstract One of the important decisions in assembly
process planning is determination of assembly sequence.
Choice of the optimum sequence is made difficult due to
various reasons. There are various precedence constraints
and optimization criteria. Moreover, a product may be possi-
ble to assemble in many alternative ways following different
sequences, thus making assembly sequence optimization a
multi-modal optimization problem with multiple optimum
solutions. It is necessary to generate as many unique opti-
mum solutions as possible in order to allow the process
planner to take a decision. Moreover, with increase in part
count, the number of feasible sequences rises staggeringly,
thereby making assembly sequence optimization laborious
and time consuming. Most conventional mathematical algo-
rithms are known to perform poorly when used to obtain
multiple optimum solutions. On the other hand, soft com-
puting based evolutionary optimization algorithms are good
candidates for multi-modal optimization. Another challenge
is to develop an algorithm that can automatically maintain
diversity in the optimum solutions found over the generations
(i.e. optimum solutions having the same fitness but unique).
Keeping the above in mind, in the present paper, an intel-
ligent assembly sequence optimization methodology based
on application of flower pollination algorithm (FPA) has
been developed to automatically generate multiple unique
optimal assembly sequences, subject to various precedence
constraints, based on minimisation of number of orientation
changes and tool changes. Since in the present paper, FPA
has been applied for the first time to a discrete optimization
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problem like assembly sequence optimization, themain chal-
lenge before us in applying FPAwas the continuous nature of
the original FPA. Therefore, modifications have been made
by us in the rules for local and global pollination of FPA
to make it suited for solving the given discrete optimization
problem. In order to evaluate the performance of FPA, the
results have been compared with two other well-known soft
computing techniques namely, Genetic Algorithm (GA) and
Ant Colony Optimization (ACO) and also with a recently
published soft computing based algorithm, Improved Har-
mony Search (IHS). It was found that the novelty of the
proposed FPA lies in its capability to find multiple unique
optimum solutions in one single simulation run and capa-
bility to automatically maintain diversity in the optimum
solutions found over the generations. On the other hand, in
case of GA, ACO and IHS, it is not possible to maintain
the diversity in multiple optimum solutions as the complete
population finally converges to a few unique optimum solu-
tions. Therefore, it can be concluded that FPAperforms better
in solving the given multi-modal optimization problem of
assembly sequence optimization.

Keywords Assembly sequence optimization ·
Computer-aided process planning · Evolutionary
optimization algorithms · Flower pollination algorithm
(FPA)

Introduction

In assembly process planning, one of the important deci-
sion making tasks is that of determination of the sequence
in which the different parts are to be assembled. It affects
not only the manufacturing time, cost and the quality of
the product but may directly or indirectly also influence the
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level of difficulty in performing the assembly, the need for
re-fixturing, need for frequent tool changes between consec-
utive assembly operations, the likelihood of parts damage
during the assembly, the ability to do in-process testing, the
need for rework and so on. A product may be possible to
assemble in a number of alternative ways by following dif-
ferent assembly sequences. However, choice of the optimum
assembly sequence is made difficult due to the following
reasons. First of all, there are various constraints that can
drive the choice of a feasible assembly sequence, depend-
ing on the design requirements, part and tool accessibility,
assembly line and work cell layout, requirements of special
operations, etc. Secondly, with increase in the part count (i.e.
the number of parts in the assembly), the number of feasible
assembly sequences possible also rises staggeringly, thereby
making the task of determining the optimal assembly plan
laborious and time consuming, if it is performed manually.
Thirdly, the assembly sequenceoptimization is amulti-modal
optimization problem, i.e. it may possess multiple optimum
solutions (having the same fitness function value). The chal-
lenge, therefore, is to obtain all or as manymultiple optimum
solutions as possible. Most conventional mathematical algo-
rithms are known to perform poorly when used to obtain
multiple optimum solutions. On the other hand, soft com-
puting based evolutionary optimization algorithms are good
candidates for multi-modal optimization. These algorithms
are inspired by naturally occurring phenomena, and by start-
ing the search process with a population of solutions, they
can find multiple optimum solutions and globally optimum
solutions through an evolutionary strategy.Most of the previ-
ous research work had been focused on determining the best
or optimum solution (which, in this case, is the optimum
assembly sequence), while another crucial problem that had
received little attention is that of generation of all or as many
multiple optimum solutions as possible.

Keeping the above in mind, in the present paper, an intel-
ligent assembly sequence optimization methodology based
on application of Flower pollination algorithm (FPA) has
been developed to automatically generate multiple optimal
assembly sequences, subject to various assembly precedence
constraints, based on minimisation of number of orienta-
tion changes of the assembly and minimisation of number
of tool changes. In order to evaluate the performance of
FPA, the results have been compared with those obtained
by using two other well-known soft computing techniques
namely, Genetic Algorithm (GA) and Ant Colony Optimiza-
tion (ACO) and alsowith a recently published soft computing
based algorithm, Improved Harmony Search (IHS).

The rest of this paper is organized as follows. Section
“Literature review” presents an overview of the previous
research work on assembly sequence planning optimiza-
tion and recent applications of FPA. A section “Proposed
FPA based approach for assembly sequence optimization”

describes the FPA based methodology developed for gen-
eration of multiple optimum assembly sequences. Section
“Illustrative examples: Results and Discussions” presents
two illustrative examples showing the application of the FPA
based approach developed in this paper and also discusses
the results of comparison of FPA with two other well-known
soft computing techniques namely, GA and ACO and also
with a recently published soft computing based algorithm,
IHS. Finally, section “Conclusions” presents the important
conclusions and scope for future work.

Literature review

General problem description

An assembly sequence is typically represented by an ordered
sequence of components that must be assembled together.
For example, if we have a n-component assembly, and if the
components are to be assembled in the sequential order of
say, component 2, followed by component 3, then compo-
nent 1 and so on, then the assembly sequence is represented
by [2, 3, 1,….]. Furthermore, to generate a feasible assembly
sequence, it is important to know the assembly precedence
constraints, if any. A precedence constraint of a component
is represented by a set of components that must be assembled
before that component. For example, if we have an assem-
bly comprising of three components i, j and k, and before
successfully assembling component k to component i, if it
is necessary to assemble component j to component i, then
component k is said to have a precedence with component
j. The precedence constraints between components are often
represented by n×n matrix, where n is the number of com-
ponents in the assembly, and each entry xij in the matrix is
assigned the value of 1, if a precedence exists between com-
ponent i and j otherwise it is assigned the value of 0. This
precedence constraint matrix needs to be provided in order
to check for the feasibility of the assembly sequences. The
assembly sequence must be generated in accordance with the
above precedence constraints. It may be possible to assemble
a product in a number of alternative ways by following dif-
ferent sequences. An optimum assembly sequence can help
to reduce the cost and time of manufacturing.

Assembly sequence planning and optimization problem

For solving the assembly sequence planning and optimiza-
tion problem, different evolutionary soft computing based
optimization algorithms have been used (Jimenez 2013) like
Genetic Algorithm (GA), Ant Colony Optimization (ACO),
Particle Swarm Optimization (PSO), Memetic Algorithm
(MA), and others.
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GAbased approaches for assembly process plan optimiza-
tion had been used by Bonneville et al. (1995), Chen and
Liu (2001), Marian et al. (2006), Choi et al. (2009), Kashk-
oush and ElMaraghy (2013) among others. Bonneville et al.
(1995) used GA which starts with valid assembly plans pro-
vided by experts. Crossover and mutation were applied on
the population and resulting offsprings were evaluated and
selected. Liaisons and geometric constraints were used to
verify the feasibility of operations. The authors reported that
the proposed GA could generate all valid and good assembly
plans but its performance was slow, and does not necessarily
guarantee optimum plans. Chen and Liu (2001) proposed an
adaptive genetic algorithm (with genetic-operator probabili-
ties varying according to certain rules) for efficiently finding
global-optimal or near-optimal assembly sequences.With the
use of Genetic-Operator Probability Settings (GOPS), pop-
ulation is diversified over the time. Marian et al. (2006) also
used GA in the area of assembly process planning where the
solutions were generated using guided search considering
both intrinsic as well as extrinsic precedence relations. Sto-
chastic sampling has been used for selection and crossover
(based on guided search with supplementary conditions)
and mutation (modified guided search operator). Choi et al.
(2009) presented the optimization of assembly sequences
using GA in which assembly time (including set up time and
actual assembly time) and number of orientation changes
were minimized. Initial population had been generated ran-
domly followed by a validity check performed using the
precedence matrix (PM). The crossover (PPX) and muta-
tion (swap mutation), elitist approach and roulette wheel had
been used in this work. However, in this work it was assumed
that the actual assembly time is constant regardless of the
assembly sequence. But in practice, theremight be other con-
straints thatmaybe encountered during assembly (Boothroyd
2005) leading to increase in time and cost of the assembly,
e.g. resistance during part insertion due to small clearances
available for manipulating the part, or due to instability of the
part after placement, thereby requiring realignment, holding
down by special fixturing, etc. Zhou et al. (2011) combined
the Bacterial Chemotaxis with GA to apply in optimisation
of assembly sequences. Assembly sequences were encoded
as chromosomes, where gene in the chromosome is treated as
a bacterium. Fitness function comprised of length of longest
feasible sub-sequence, number of orientation changes, num-
ber of gripper changes. Kashkoush and ElMaraghy (2013)
developed a variant based CAPP approach using GA for gen-
erating assembly sequence for sequential, non-linear product
assemblies. Assembly representation has been done using
partial assembly tree, and tree information (sequence of
leaves and topology) had been encoded into matrices. The
proposed method had been demonstrated using a real case
study involving three different variants of a back-flushing
control valve.

Ant Colony Optimization (ACO) based approaches for
assembly process plan optimization had been proposed by
Wang et al. (2005), Yu and Wang (2013) and Wang et al.
(2014) among others. Wang et al. (2005) proposed an ACO
based approach to assembly sequence optimization where
an approach “assembly by disassembly” had been used. Geo-
metric feasibility was guaranteed with the use of Interference
matrix, and fitness function was comprised of number of
disassembly direction changes. However, the approach pro-
posed by the authors considered only optimization of number
of orientation changes for the assembly. But there may be
other criteria like minimization of changes in tools/gripper
used, stability issues, etc., whichwere not considered. Yu and
Wang (2013) presented an improved ACO (MMACS) based
approach for assembly sequence planning that combines the
advantages of ant colony system (ACS) and max-min ant
system (MMAS), where a multi-objective heuristic function
had been used comprising of reorientation, parallelism, con-
tinuity, stability, and auxiliary strokes (i.e. frequent changes
of operation station). The advantages of pseudo-random pro-
portional rule and the local updating rule of ACS had been
combined with the global updating rule with mixed strate-
gies and max–min pheromone limits of MMAS. Wang et al.
(2014) proposed an ACO algorithm for mechanical assem-
bly, where the proposed method focused on the generation
of solution space for finding the optimum solution. DFIG
(Disassembly Feasibility Information Graph) had been gen-
erated and extended to collect the relevant assembly data and
information (including constraint relationships) of assembly
and disassembly planning.

PSO based approach for assembly process plan optimiza-
tion was used byWang and Liu (2010), Lv and Lu (2010), Li
et al. (2013) and Zhang et al. (2014) among others.Wang and
Liu (2010) developed thePSObased assembly sequence opti-
misation technique to generate the optimal or near-optimal
assembly sequences. Assembly cost is subjected to geo-
metrical constraints and five assembly process constraints
namely, local assembly precedence, number of the unstable
parts, assembly direction changes, assembly tools changes,
connector changes. Lv and Lu (2010) presented the appli-
cation of discrete PSO in assembly sequence optimisation.
They considered total number of tool changes, orientation
changes, and operation type changes and interference times
in the product assembly. Special operators namely subtrac-
tion operator, addition operator, and multiplication operator
are used to update the position and velocity of particles.
Li et al. (2013) presented a hybrid algorithm of improved
discrete particle swarm optimization (IDPSO) with a mod-
ified evolutionary direction operator (MEDO) to solve the
assembly sequence planning problem, where fitness function
includes changes in number of orientations, tools and opera-
tion types. The problem of premature and fast convergence of
DPSO algorithm had been removed in IDPSO. The inputs in
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the algorithm were assembly parts, their interference matrix,
and the weight coefficients. Zhang et al. (2014) presented
Immune and Particle Swarm Optimization (IPSO) algorithm
to solve the assembly sequence of a certain type of product.
Geometric feasibility and coherence had been designed as
constraint conditions, and their judgment conditions are pre-
sented, and these two constrains and processability had been
combined with each other as the objective function. It had
been tested by two assembly examples.

Other algorithms such as Psychoclonal Algorithm,
Memetic algorithm and recently an Improved Harmony
Search algorithm had also been used for assembly sequence
optimization. Tiwari et al. (2005) applied the extension of
Artificial Immune Systems (AIS) approach, due to its virtue
of learning and memory acquisition, in the field of assem-
bly configuration planning. The proposed algorithm applied
the concept of Maslow’s need hierarchy theory and the
theory of clonal selection and was given the name of Psy-
choclonal Algorithm. The results of Psychoclonal Algorithm
were compared with that of Genetic Algorithm and Immune
Algorithm. Tseng et al. (2007) used Memetic algorithm for
assembly sequence optimization where assembly parts had
been categorized into the connectors having different fas-
tener types, assembly tools, directions, and connector based
precedence graph. Fitness function had been determined
by the similarity of the engineering data of the connec-
tor. PMX crossover and Insert mutation and followed by
binary tree search had been used to generate the feasi-
ble solutions. Later, guided crossover and guided mutation
had been used to meet with the constraints of the assem-
bly problem and the local search. Cao and Xiao (2007)
explored the use of Immune optimisation Algorithm (IOA)
in the problem of assembly planning to generate the opti-
mal assembly plan. The algorithm was based on the bionic
principles of AIS, where IOA introduced manifold immune
operations including immune selection, clonal selection,
inoculation and immune metabolism. Assembly sequences
were evaluated based on total number of components, assem-
bly direction changes, assembly tool changes, location of
base component in the sequence, and feasibility degree.
Gao et al. (2010) developed an assembly sequence opti-
misation approach based on Memetic Algorithm where a
chromosome represented an assembly sequence consisting of
genes containing the part number and the direction variable.
They considered times of the assembly direction changes
and assembly feasibility as the objective function. PMX
crossover and swap mutation in addition to local search
have been used to generate new offsprings. Xing and Wang
(2012) presented the hybrid PSO and GA based assembly
sequence optimisation for compliant assemblies based on
graph theory. Liaison graph and adjacency matrix were used
to describe the geometry of the compliant assemblies and
assembly sequence is represented as the string of parts,whose

length is equal to number of parts in the assembly. Assembly
sequences were evaluated on the basis of assembly varia-
tion due to dimensional tolerance. Recently, Li et al. (2016)
developed an assembly sequence planning algorithm based
on Improved Harmony Search (IHS). They have proposed
new aspects like an initial harmony memory (HM) estab-
lished using the opposition-based learning (OBL) strategy, a
way to improvise a new harmony and a local search strategy.
They considered changes of assembly direction and assem-
bly tool and stability criteria in the fitness function.

It is evident from the above literature review that many
different soft computing based evolutionary optimization
approaches have been developed for determining the best
or optimum assembly sequence. However, it is to be kept in
mind that the assembly sequence optimization is a multi-
modal optimization problem, i.e. it may possess multiple
optimum solutions (having the same fitness function value)
e.g. sequences requiring same number of orientation and tool
changes. However, other constraints may be encountered
in practice such as resistance during part insertion due to
small clearances available for manipulating the part with the
tool/gripper, or due to instability of the part after placement,
thereby requiring realignment, holding down by special fix-
turing, etc., whose time and cost can also be significant in
some cases. Moreover, multiple assembly sequences can be
sometimesuseful for providing alternative routingopportuni-
ties in case of dynamic scheduling of mixed-model assembly
lines, in cases where some assembly operations on a prod-
uct type have to wait due to unavailability of the assembly
station as it is occupied in processing another product type.
In that case, alternative process routes, if available, can be
explored to see if the assembly precedence constraints would
permit a subsequent operation to be done before. Therefore,
we should aim at finding not only the best or optimum assem-
bly sequence, but all or as many such multiple optimum
solutions as possible. It is, however, felt that this is a cru-
cial problem that had received relatively little attention in the
research work reported in the literature review.

Flower pollination algorithm based optimization

Recently with the development of the flower pollination
algorithm (FPA) by Yang (2012), it has been used for solv-
ing economic dispatch problems in electrical power systems
(Dubey et al. 2015) and in the field of design by Sabari-
nath et al. (2015). Dubey et al. (2015) developed a modified
flower pollination algorithm (MFPA) for solving small and
medium scale economic dispatch problems of power sys-
tems by making local pollination operation more effective
through a user-controlled scaling factor and through intro-
duction of an additional intensive exploitation phase. Results
of modified FPA were compared with FPA, Cuckoo Search,
and Gravitational Search Algorithm (GSA). Sabarinath et al.
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(2015) developed an FPA based approach for optimizing the
design of a flywheel and compared the results with GA. In
both the above problems, FPAwas reported to give promising
results.

Although FPA has been shown to give promising results in
solving engineering optimization problems as evident from
the above two applications, the main challenge to apply
FPA to solve an assembly sequence optimization problem
is the continuous nature of the FPA. This is so because the
search space of basic FPA is a real space domain, while in
assembly sequence optimization, the solution search space
is discrete, comprising of discrete assembly sequences, from
which the optimum solution must be determined. As a result,
the basic FPA equations cannot be used directly to solve
the given problem of discrete assembly sequence optimiza-
tion. Therefore, modifications need to be made in the basic
FPA in the rules for local and global pollination to make
it suited for solving the problem on hand. Keeping the
above in mind, the present paper proposes a modified FPA
based approach for automatically generating multiple opti-
mal assembly sequences. A comparison of the results of the
proposed FPA with those of GA, ACO and IHS have been
also presented, which show that the proposed approach out-
performs GA, ACO and IHS in finding multiple optimum
assembly sequences.

Proposed approach for assembly sequence
optimization

Problem description

In this paper, the purpose is to develop a methodology of
determining the optimal assembly sequence, which can help
to reduce the time and cost of manufacturing. A change of
the assembly orientation incurs time andusually increases the
assembly cost. The number of direction/orientation changes
may be computed as follows.

Total number of direction changes

=
n−1∑

i=1

(dir_changei,i+1) (1)

where, n is the number of components in the assembly,
dir_changei,i+1 indicates the change in assembly direction
for two consecutive assembly operations, assembly_diri
indicates the assembly direction of component number i
(which may be one or more of the following directions
namely, ±x or ±y or ±z)

dir_changei,i+1

=
{
0, i f assembly_diri = assembly_diri+1

1, otherwise
(2)

Moreover, during parts handling and insertion for assem-
bly, the human worker (in case of manual assembly) or a
robot manipulator (in case of automated assembly) grasps
and places the parts with the help of assembly tools such
as screw driver, wrench, hammer, rivet gun, or sometimes
two/three fingered grippers (in case of automated assembly),
etc. A change of assembly tool also incurs time and increases
the assembly cost. The number of assembly tool changesmay
be computed as follows.

Total number of tool changes =
∑n−1

i=1
(tool_changei,i+1)

(3)

where, n is the number of components in the assembly,
tool_changei,i+1 indicates the change in assembly tool for
two consecutive assembly operations, tool_numberi indi-
cates the tool number necessary for handling/insertion of
component number i (each assembly tool is identified by
a unique tool number in the tool database),

tool_changei,i+1

=
{
0, i f tool_numberi = tool_numberi+1

1, otherwise
(4)

Thus in assembly sequence optimization, the above two
objectives pertaining to assembly orientation changes and
tool changes should beminimized to reduce the time and cost
of manufacturing. Accordingly, for evaluating the assembly
sequences, a fitness function (FF) has been formulated and
given in Eq. 5.

FF = 1/ (wx ∗ Total no. of direction changes

+wy ∗ Total no.of tool changes

− f easibili t y index) (5)

where wx and wy are the weights associated with total no. of
direction changes and total no. of tool changes respectively.

For pruning out the infeasible assembly sequences while
evaluating them, it is necessary to check their feasibility using
the precedence matrix. To assign a higher fitness value to
feasible sequences, a feasibility index has been introduced
as stated in Eq. 6.

The feasibility index

=
{
2, i f the assembly sequence is f easible
0, otherwise

(6)

Moreover, it is to be kept inmind that theremay bemany pos-
sible alternative assembly sequences all of which are equally
optimal i.e. they require same number of orientation changes
and tool changes and thus have the same fitness function
(FF) value. Therefore, the assembly sequence optimization
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is a multi-modal optimization problem. Hence, our objec-
tive is to find not only a single optimum assembly sequence
but to identify as many optimum assembly sequences as
possible.

Basic principle of flower pollination algorithm

This section presents the basic principle of flower pollina-
tion algorithm (FPA) or flower algorithm that was originally
proposed by Yang (2012). Flowering plants in nature have
been evolving for more than 125 million years through the
process of evolution. In a plant, a flower ultimately serves
the purpose of reproduction via pollination. Flower polli-
nation is typically associated with the transfer of pollen,
and such transfer is often performed by pollinators such
as insects, birds, bats and other animals. In nature, polli-
nation phenomenon can take two forms: abiotic and biotic.
Biotic pollination is estimated to account for about 90% of
flowering plants, with pollens being transferred by insects
and/or animals. It is estimated that about 10% of pollina-
tion belongs to abiotic pollination that does not require any
pollinators. Wind and diffusion in water assist in pollina-
tion of such flowering plants and grass is a good example
of a product that is the result of abiotic pollination. Hon-
eybees are another good example of pollinator, which can
also develop the flower constancy i.e. tendency of pollina-
tors to visit exclusively certain flower species while avoiding
other flower species. Such flower constancy may provide
evolutionary advantages as this can maximise the transfer
of flower pollen to the same plants, and thus maximis-
ing the reproduction and hence survival of the same flower
species.

Furthermore, pollination can also take the form of self-
pollination or cross-pollination. Cross-pollination, or
allogamy, is pollination occurring from pollen of a flower
of a different plant, whereas self-pollination is the fertilisa-
tion of one flower, from pollen of the same flower or different
flowers of the same plant, which often occurs when there is
no reliable pollinator available. Biotic, cross-pollinationmay
occur at long distances, and the pollinators such as bees, bats,
birds and flies can fly a long distance, thus they can be con-
sidered as the global pollination. In addition, bees and birds
may behave Levy flight behavior, with jump or fly distance
steps that obey a Levy distribution.

The following rules have been laid down for flower polli-
nation algorithm (Yang 2012),

1. Biotic and cross-pollination is considered as global
pollination process with pollen carrying pollinators per-
forming Levy flights.

2. Abiotic and self-pollination are considered as local pol-
lination.

3. Flower constancy can be considered as the reproduction
probability, which is proportional to the similarity of two
flowers involved.

4. Local pollination and global pollination are controlled by
a switch probability p ∈ [0, 1]. Due to the physical prox-
imity and other factors such as wind, local pollination
can have a significant fraction p in the overall pollination
activities.

The global pollination (rule 1) can be represented mathe-
matically as

xt+1
i = xti + γ L

(
g∗ − xti

)
(7)

where, xti is the pollen i or solution vector xi at iteration t, and
g* is the current best solution found among all solutions at the
current generation/iteration. L is a step-size parameter, more
specifically the Levy-flights-based step size that corresponds
to the strength of the pollination. Since insects may travel
over a long distance with various distance steps, a Levy flight
can be used to mimic this characteristic efficiently. That is,
L > 0 is drawn from a Levy distribution is given in Eq. 8.

L = λΓ (λ) sin (πλ/2)

π
∗ 1

s1+λ
(8)

In the above equation, the gamma function Γ , as suggested
in the paper by Yang (2012), is the standard gamma function
whose value depends on the value of λ. Yang (2012) had
suggested the value of λ to be 1.5, for which gamma function
value is 0.88 (Abramowitz and Stegun 1964).

The local pollination (rule 2) can be represented as given
in Eq. 9 where ∈ is drawn from the uniform distribution in
the range of 0 to 1.

xt+1
i = xti + ∈

(
xtj − xtk

)
(9)

Figure 1 shows the pseudo code of the basic flower pollina-
tion algorithm developed by Yang (2012).

Proposed flower pollination algorithm for assembly
sequence optimization

The main challenge to apply FPA to solve an assembly
sequence optimization problem is the continuous nature of
the basic FPA presented by Yang (2012). This is so because
the search space of basic FPA is a real space domain, while in
assembly sequence optimization, the solution search space is
discrete. Therefore, the followingmodifications in basic FPA
have been made by us in the rules for local and global polli-
nation to make it suited for solving the problem on hand.
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Objective min or max f(x), x = (x1, x2, x3,…., xd)
Initialise a population of n flowers/pollens gametes with random solutions
Fins the best solution g* in the initial population
Define a switch probability p ∈ [0, 1]
while (t<MaxGeneration)

for i=1:n (all n flowers in the population)
if rand< p

Draw a (d-dimensional) step vector L which obeys a Levy distribution
Global pollination via xi

t+1=xi
t + L (g*-xi

t)
else

Draw ∈ from a uniform distribution in [0,1]
Randomly choose j and k among all solutions 
Do local pollination via xi

t+1=xi
t + ∈ (xj

t-xk
t)

end if
Evaluate new solutions
If new solutions are better, update them in the population
end for

Find the current best solution g*
end while

Fig. 1 Pseudo code of the basic flower pollination algorithm

Proposed representation scheme

An assembly sequence has been represented as a string, thus
the sequence [1 3 4 5 6 7 8 9 10 15 16 2 12 11 13 14] is rep-
resented as “01,03,04,05,06,07,08,09,10,15,16,02,12,11,13,
14”, each part number being represented by a two-digit num-
ber e.g. part number 2 being represented by 02, part number
13 being represented by 13.

Proposed method of implementing global pollination rules

Let us suppose that we have two assembly sequences repre-
sented by the following two strings:

String 1: “01,04,08,10,16,07,03,09,05,15,06,02,12,13,
14,11”

String 2: “01,04,07,08,10,16,03,09,15,06,05,02,13,14,
12,11”

Suppose that string 1 is the global best (g*) found among
all solutions at the current iteration and the string 2 (xti) is
the string under consideration onwhich the global pollination
rule is to be applied to generate a new string (xt+1

i i ). As per
the global updating rule, the difference (g∗ −xti) between the
two strings is first computed as follows.

(g∗ − xti) = “00000102059099999009009998990200”

The difference (g∗ − xti) is then multiplied by the value of
L computed as per the equation 7 and a scaling factor (γ )

which yields the following result. The value of γ has been
taken as 10−10 for the given problem to control the step size.
The following shows the method of computing the product,
γ ∗ L ∗ (g∗ − xti) for a step length of s=5.

γ ∗ L ∗ (g∗ − xti) = 10−10 ∗ 0.0053

∗ 00000102059099999009009998990200
= 54, 12, 18, 22, 00, 04, 75

The above result is then added into the string xti as per the
global pollination rule to yield a new assembly sequence as
explained below.

01, 04, 07, 08, 10, 16, 03, 09, 15, 06, 05, 02, 13, 14, 12, 11
+ 54, 12, 18, 22, 00, 04, 75
01, 04, 07, 08, 10, 16,03, 09, 15, 60, 17, 20, 35, 14, 16, 86

As shown above, addition is performed on each compo-
nent of the assembly from the right side. It may be, however,
necessary to repair the string following the addition operation
as explained below. If after addition, the value becomesmore
than the maximum number of components in the assembly,
the value is reverted to its previous value. For example, if 75
(last two digits of the γ ∗L ∗ (g∗ − xti)) is added to last two
digits of string 2 (xti), the value becomes 86. Since the max-
imum number of components in the assembly is 16, hence
this value is reverted to 11 only. Next, the last but one digit
of the string 2 (xti) correspond to 12. When the last but one
digit of the γ ∗ L ∗ (g∗ − xti)) i.e. 04 is added, the resul-
tant becomes 16. But there is already a component 16 in the
sequence. As it is not permitted to have the same component
number repeated more than once in a sequence, it is neces-
sary to repair the above string through a rearrangement of
the some of the string elements so as to make sure that no
number is repeated in the same assembly sequence. In the
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above string, it is observed that the component number 12 is
missing and therefore the component 16 is replaced with the
component 12. Thus the new string resulting from the global
pollination is as given below.

New string

= “01, 04, 07, 08, 10, 12,03, 09, 15, 06, 05, 02, 13, 14, 16,11”

Proposed method of implementing local pollination
rules

The local pollination equation takes the difference (xtj − xtk)

between two strings xtj and xtk, which are selected from the
same population. These two strings are selected from the
population by generating two random numbers within the
population size. Let us assume that the strings are as given
below:

xti = “01, 04, 10, 07, 08, 16, 03, 05, 06,

09, 15, 02, 12, 13, 14, 11”

xtj = “01, 04, 03, 06, 10, 16, 05, 07, 08,

09, 15, 02, 11, 13, 14, 12”

xtk = “01, 03, 04, 08, 05, 06, 07, 10, 09,

16, 15, 02, 14, 11, 13, 12”

The difference between (xtj − xtk) gives the following value

(xtj − xtk) = “00009898050997969892999997020100”

A random number (∈) is drawn from a uniform distrib-
ution in the range of 0 to 1, which is then multiplied with
the difference between the two strings (xtj − xtk) along with
a scaling factor (k) that we have introduced in the modified
local pollination rule. The resulting product is next added to
the selected string (xti) on which local pollination is being
performed. After taking the scaling factor (k) into consid-
eration, the equation for local pollination given in Eq. 9 is
modified as follows.

xt+1
i = xti + k∗ ∈ ∗

(
xtj − xtk

)
(10)

The reason for introducing the scaling factor (k) is to shorten
the length of the resulting string to be added so as tomake sure
that after the addition, only a portion of the original string (xti)
gets modified, while some portion of the original string may
remain intact. This may help to ensure that some property of
the original string is inherited by the new offspring.

For example, if the random number generated is 0.03069,
then we obtain the following

k ∗ ε ∗ (xtj − xtk)

= 10−20 ∗ 0.03069 ∗ 00009898050997969892999997020100

= “03, 03, 80, 04”

The above result is then added into the string xti as per the
local pollination rule given in Eq. 6 to yield a new assembly
sequence in a similar manner as done for global pollination
rule.

01, 04, 10, 07, 08, 16, 03, 05, 06, 09, 15, 02, 12, 13, 14, 11
+ 03, 03, 80, 04
01, 04, 10, 07, 08, 16,03, 05, 06, 09, 15,02, 15, 16,94, 15

Next it is necessary to repair above string which is the
result of addition. For example, the bits which are repeated
in the assembly sequence e.g. 15 and 16 need to be rearranged
in such a way that no component number is repeated in the
same assembly sequence as already explained above in case
of our proposed scheme of global pollination rule. The new
sequence resulting from the local pollination obtained after
the rearrangement as well as the old sequence is as given
below.

Old sequence = “01, 04, 10, 07, 08, 16, 03, 05,

06, 09, 15, 02, 12, 13, 14, 11”

New sequence = “01, 04, 10, 07, 08, 11, 03, 05,

06, 09, 12, 02, 15, 16, 14, 13”

While implementing the local pollination rule given in
Eq. 10, the string representing the result of k ∗ ε ∗(xtj − xtk)

was initially added to the string xti at the end. However, it
was found that the FPA algorithm required large number of
iterations for convergence to the optimum and often it got
stuck in local optimum. It was then decided to add string
representing the result of k ∗ ε ∗(xtj − xtk) at different posi-

tions in the string xti, the position being chosen randomly. It
was found after the above modification that the number of
iterations required for convergence to the optimum reduced
and the average fitness of the solutions also improved by as
much as 40%. It has further been observed because of the use
of randomly selected location for the addition of multiplied
value with the original string, the effect of not having same-
number conflict has minimized and in turn, the performance
of the algorithm is immune to this effect.

To investigate the effect of the parameter scaling factor
k on the performance of the algorithm, the value of k was
varied from 10−30 to 10−10 by keeping the population size
fixed at 20, the step length 7, switch probability (p) 0.5. It
was observed that the algorithm performs best for the value
of k = 10−20 in terms of highest average fitness and largest
number of unique optimum solutions. However, lower val-
ues of k (<10−20) adversely affected the performance of the
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algorithm in the form of slower convergence, lower average
fitness and lesser number of unique optimum solutions. Fur-
ther for higher values of k (> 10−20), the run time of the
algorithm was found to be longer. This behavior is perhaps
due to the fact that for higher values of k, the resulting string
to be added is longer, which explains why it will take longer
computational time.

The modified FPA proposed by us has been implemented
in MATLAB for obtaining the optimal assembly sequences
and the results are presented in the next section. For compar-
ing the results of our proposed FPA with those of GA, ACO
and IHS algorithms, the GA given in Choi et al. (2009), the
ACO algorithm given inWang et al. (2005) and the IHS algo-
rithm given in Li et al. (2016) have also been implemented in
MATLAB and their results have been also presented. How-
ever, in the GA approach adopted in the present paper, the
crossover operator that has been used is partially matched
crossover (PMX), whereas in the GA approach by Choi et al.
(2009), precedence preservative crossover (PPX) was used.
The reason for selecting PMX over PPX is that the results
obtained by us using the PMX crossover operator were found
to give slight improvement in maintaining the diversity of
solutions than those obtained using the PPX.

Illustrative examples: results and discussions

Two example products taken from literature are considered
here to demonstrate the working of the proposed FPA and
also to evaluate its performance and compare it with those of
GA, ACO and IHS.

Example 1: Motor drive assembly

The first example is a motor drive assembly with a total of 12
different parts adapted fromDesign forAssemblyUserGuide
(2010). Figure 2 shows the assembly with all its parts and
their assembly directions. Table 1 lists the tools and grippers
for performing the assembly. The above information must be
provided by the user as input. In addition to the above tool
and gripper information and the assembly directions, the user
also inputs the precedence relationships between the parts as
shown inTable 2. The component number 1 has been selected
as the base component.

Table 1 Tools and grippers for performing the motor drive assembly
shown in Fig. 2

Part no. Part name Tool/gripper name

1 Motor base Two-finger parallel gripper

2 Bushing_1 Two-finger parallel gripper

3 Motor Two-finger parallel gripper

4 End plate Two-finger adaptive gripper

5 Sensor Two-finger adaptive gripper

6 Cover Two-finger parallel gripper

7 Motor screw_1 Slotted screw driver no. 1

8 Set screw Allen key

9 End plate screw_1 Slotted screw driver no. 2

10 Cover screw_1 Philips screw driver

11 Stand off_1 Open end wrench

12 Grommet Hammer

Fig. 2 A motor drive assembly

123



J Intell Manuf

Table 2 Precedence
relationships between the parts
of the motor drive assembly

1 2 3 4 5 6 7 8 9 10 11 12

1 0 0 0 0 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0 0 0 0 0

3 1 0 0 0 0 0 0 0 0 0 0 0

4 1 1 1 0 1 0 1 1 0 0 1 0

5 1 0 0 0 0 0 0 0 0 0 0 0

6 1 1 1 1 1 0 1 1 1 0 1 1

7 1 0 1 0 0 0 0 0 0 0 0 0

8 1 0 0 0 1 0 0 0 0 0 0 0

9 1 1 1 1 1 0 1 1 0 0 1 0

10 1 1 1 1 1 1 1 1 1 0 1 1

11 1 0 0 0 0 0 0 0 0 0 0 0

12 1 1 1 1 1 0 1 1 1 0 1 0

Assembly directions −z −z −z −z −z +z −z +x −z −y −z −y

Fig. 3 Convergence graph of
FPA for the motor drive
assembly for 500 iterations
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Results of FPA simulation runs for motor drive assembly

The basic FPA developed by Yang (2012) has five main con-
trol parameters. These include population size, maximum
number of iterations, switch probability (between 0 and 1),
a factor by which step size is controlled i.e. γ and the step
size s used to calculate the value of L in the global polli-
nation rule. In the modified FPA proposed by us, there is
an additional parameter namely the scaling factor (k) used
in the local pollination rule. Initially in our FPA simulation
runs, the population size was fixed at 6 and the step length
was fixed at 5, switch probability (p) was increased from
0.5 to 0.7 in steps of 0.1 keeping maximum number of iter-
ations constant at 500. The population size was increased
from 6 to 25 in steps of 5. The step length was increased
from 5 to 7 in steps of 1. The maximum fitness obtained is
0.2 (assuming the weights wx = wy = 0.5 in the fitness

function given in equation 5). The maximum number of
unique optimum solutions obtained after 500 iterations is 9.
For 500 iterations, the optimum set of FPA parameters for
which the maximum number of unique optimum solutions
is obtained is population size of 20, step length of 7 and
switch probability of 0.5. Figure 3 shows the convergence
graph of FPA for 500 iterations. Table 3 shows the list of opti-
mum assembly sequences corresponding to above set of FPA
parameters.

Using the above set of parameters, the number of itera-
tions was increased to 2000 to see if we obtain more number
of unique optimum solutions. Figure 4 shows the conver-
gence graph of FPA for 2000 iterations. It is observed that
the maximum number of optimum solutions was found to
increase to 15. Table 4 shows the list of optimum assembly
sequences obtained after 2000 iterations.
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Table 3 List of unique optimum feasible assembly sequences for motor drive assembly generated by FPA for population size of 20 after 500
iterations

Sl. No. Optimal assembly sequence No. of 
orientation 
changes

No. of 
tool 
changes

Fitness 
value

1. [1     2     3     5     8    11     7     4     9    12     6    10] 5 9 0.2000
2. [1     2     3     7     5    11     8     4     9    12     6    10] 5 9 0.2000
3. [1     2     3    11     5     7     8  4     9    12     6    10] 5 9 0.2000
4. [1     3     2     5     7     8    11     4     9    12     6    10] 5 9 0.2000
5. [1     3     2     5     7    11     8     4     9    12     6    10] 5 9 0.2000
6. [1     3     2     5     8     7    11   4     9    12     6    10] 5 9 0.2000
7. [1     3     2     5    11     8     7     4     9    12     6    10]     5 9 0.2000
8. [1     3     2    11     5     8     7     4     9    12     6    10] 5 9 0.2000
9. [1     3     2    11     7     5     8     4     9    12     6    10] 5 9 0.2000
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Fig. 4 Convergence graph of FPA for the motor drive assembly for 2000 iterations

Table 4 List of unique optimum assembly sequences for motor drive assembly generated by FPA for population size of 20 after 2000 iterations

Sl. No. Optimal assembly sequence No. of 
orientation 
changes

No. of tool 
changes

Fitness 
value

1. [1     2     3     5     7     8    11     4     9    12     6    10] 5 9 0.2000
2. [1     2     3     5     8    11     7     4     9    12     6    10]   5 9 0.2000
3. [1     2     3     5    11     7     8     4    9    12     6    10] 5 9 0.2000
4. [1     2     3     5    11     8     7     4     9    12     6    10] 5 9 0.2000
5. [1     2     3    11     5     7     8     4     9    12     6    10] 5 9 0.2000
6. [1     2     3    11     5     8     7     4     9    12     6    10] 5 9 0.2000
7. [1     2     3    11     7     5     8     4     9    12     6    10] 5 9 0.2000
8. [1     3     2     5     7    11     8     4     9    12     6    10] 5 9 0.2000
9. [1     3     2     5     8     7    11     4     9    12     6    10] 5 9 0.2000
10. [1     3     2     5     8    11     7     4     9    12     6    10] 5 9 0.2000
11. [1     3     2     5    11     7     8     4     9    12     6    10] 5 9 0.2000
12. [1     3     2     5    11     8     7     4     9    12     6    10] 5 9 0.2000
13. [1     3     2     7    11     5     8     4     9    12     6    10] 5 9 0.2000
14. [1     3     2    11     5     7     8     4     9    12     6    10] 5 9 0.2000
15. [1     3     2    11     7     5     8     4     9    12     6    10] 5 9 0.2000

123



J Intell Manuf

Table 5 Comparison of results
of GA, ACO, IHS and FPA for
motor drive assembly after 500
iterations

GA ACO IHS Proposed FPA

Optimum fitness value 0.2000 0.2000 0.2000 0.2000

Optimum number of tool changes 9 9 9 9

Optimum number of direction changes 5 5 5 5

Average fitness value 0.2000 0.1991 0.1891 0.1909

Number of unique optimum assembly sequences 4 9 8 9

Table 6 Comparison of results
of GA, ACO, IHS and FPA for
motor drive assembly after
2,000 iterations

GA ACO IHS Proposed FPA

Optimum fitness value 0.2000 0.2000 0.2000 0.2000

Optimum number of tool changes 9 9 9 9

Optimum number of direction changes 5 5 5 5

Average fitness value 0.2000 0.1952 0.1894 0.1973

Number of unique optimum assembly sequences 4 9 12 15

Comparison between the results of FPA, GA, ACO and IHS
algorithms for motor drive assembly

The GA simulation runs were carried out for 500 iterations
and population size of 20. Using the same fitness function
given in Eq. 5, the maximum fitness obtained was 0.2. The
maximum number of unique optimum solutions obtained
after 500 iterations is 4. For 500 iterations, the optimum set
of GA parameters for which the maximum number of unique
optimum solutions was obtained is crossover probability of
0.90 and mutation probability of 0.05. Using the above set
of parameters, as the number of iterations was increased to
2000, the maximum number of optimum solutions was still
found to be 4 i.e. the same as that obtained after 500 itera-
tions.

Similarly, the simulation runs of the ACO algorithm were
also carried out for 500 iterations and population size of 20.
Using the same fitness function given in Eq. 5, the maximum
fitness obtained was 0.2. The maximum number of unique
optimum solutions obtained after 500 iterations is 9. For 500
iterations, the optimum set of ACO parameters for which the
maximumnumber of unique optimumsolutionswas obtained
is rate of pheromone evaporation (ρ) 0.1, pheromone decay
parameter (γ )0.1, relative importance of pheromone (β)0.8,
and initial value of pheromone trail (τ0)1. Using the above
set of parameters, as the number of iterations was increased
to 2000, the maximum number of optimum solutions was
still found to be 9 i.e. the same as that obtained after 500
iterations.

Similarly, the simulation runs of the IHS algorithm were
also carried out for 500 iterations and population size
of 20. Using the same fitness function given in equation
5, the maximum fitness obtained was 0.2. The maxi-
mum number of unique optimum solutions obtained after
500 iterations is 8. For 500 iterations, the optimum set

of IHS parameters for which the maximum number of
unique optimum solutions was obtained is Harmony Mem-
ory Considering Rate (HMCR) 0.9 and Pitch Adjustment
Rate (PAR) 0.1. Using the above set of parameters, as
the number of iterations was increased to 2000, the maxi-
mum number of optimum solutions was found to increase
to 12.

Table 5 presents the comparison between the results of
simulation runs of GA, ACO, IHS and FPA for 500 iterations
for the given example ofmotor drive assembly keeping popu-
lation size 20 for all the four algorithms. Table 6 presents the
comparison between the results of simulation runs of the four
algorithms for 2000 iterations. The numbers indicated in ital-
ics in Tables 5 and 6 are the results obtained by the proposed
FPA, which are better than or as good as the results obtained
by GA, ACO and IHS. From the results of Table 5, after 500
iterations, the proposed FPA is found to give optimum fitness
value, which is comparable with those of GA, ACO and IHS.
In terms of capability to generate multiple unique optimum
solutions, both the proposed FPA and ACO could generate 9
unique optimum solutions, as compared to GA which could
give only 4 unique optimum solutions and IHS which could
give only 8 unique optimum solutions, and therefore after
500 iterations, both FPA and ACO were found to be better
thanGA and IHS. It is to be further noted that the GA popula-
tion at the end of all the simulations runs was found to be less
diverse (i.e. having lesser number of unique optimum solu-
tions) compared to FPA, ACO and IHS, and it comprised of
multiple copies of one ormore optimumassembly sequences.
Therefore from Tables 5 and 6, although average fitness of
GA is higher than FPA, the number of unique optimum solu-
tions generated by GA is far less compared to FPA. Figure 5
shows the comparison between the convergence graphs of
FPA, GA, ACO and IHS after 500 iterations. From a com-
parison of the above graphs, it is found that convergence
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Fig. 5 Comparison of convergence of the four algorithms (i.e. GA, ACO, IHS and FPA) for motor drive assembly after 500 iterations

Part 
no.

Part name

1 Base
2 Top Cover
3 U-shaped bracket a
4 U-shaped bracket b
5 Rivet a
6 Rivet b
7 Rivet c
8 Rivet d
9 Cutter a

10 Cutter b
11 Rivet e
12 Rivet f
13 Rivet g
14 Rivet h
15 Clip a
16 Clip b
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Fig. 6 Punching machine assembly

of FPA is slower compared to GA and ACO, and faster
than IHS in general. However, as the number of iterations
was increased to 2000, FPA is found to clearly outperform
GA, ACO and IHS in terms of its capability to generate
more number of unique optimum assembly sequences i.e.
15 compared to only 4, 9, and 12 sequences that could be
generated by GA, ACO, and IHS respectively. Furthermore,
as the simulation run is continued for 2000 iterations, it is
observed that the average fitness of FPA tends to catch up
with the average fitness of GA, ACO and IHS. In conclu-
sion, FPA is clearly found to be better in solving the given

multi-modal optimization problem of assembly sequence
optimization.

Example 2: Punching machine assembly

The second example that has been considered is that of
punchingmachine assembly.This assembly contains 16 com-
ponents. The assembly with all the parts and their assembly
directions have been shown in Fig. 6. Table 7 lists the tools
and grippers for performing the assembly. The above infor-
mation must be given by the user as input. In addition to
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the above information, the user also inputs the precedence
relationships between the parts as shown in Table 8. The
component number 1 has been selected as the base compo-
nent.

Table 7 Tools and grippers for performing the punching machine
assembly shown in Fig. 5

Part no. Part name Tool/gripper name

1 Base Two-finger adaptive gripper

2 Top cover Three-finger adaptive gripper
no. 1

3 U -shaped bracket a Two-finger parallel gripper

4 U -shaped bracket b Two-finger parallel gripper

5 Rivet a Rivet gun no. 1

6 Rivet b Rivet gun no. 1

7 Rivet c Rivet gun no. 1

8 Rivet d Rivet gun no. 1

9 Cutter a Rivet gun no. 2

10 Cutter b Rivet gun no. 2

11 Rivet e Rivet gun no. 2

12 Rivet f Rivet gun no. 2

13 Rivet g Rivet gun no. 2

14 Rivet h Rivet gun no. 2

15 Clip a Three-finger adaptive gripper
no. 2

16 Clip b Three-finger adaptive gripper
no. 2

Results of FPA simulation runs for punching machine
assembly

Initially in our FPA simulation runs, the population size was
fixed at 6 and the step lengthwas fixed at 5, switch probability
(p) was increased from 0.5 to 0.7 in steps of 0.1 keepingmax-
imum number of iterations constant at 700. The population
size was increased from 6 to 25 in steps of 5. The step length
was increased from 5 to 7 in steps of 1. The maximum fitness
obtained is 0.4 (assuming the weights wx = wy = 0.5 in the
fitness function given in equation 5). The maximum number
of unique optimum solutions obtained after 700 iterations is
9. For 700 iterations, the optimum set of FPA parameters for
which the maximum number of unique optimum solutions
is obtained is population size of 20, step length of 7 and
switch probability of 0.5. Figure 7 shows the convergence
graph of FPA for 700 iterations. Table 9 shows the list of
optimum assembly sequences corresponding to above set of
FPA parameters. All the above assembly sequences have the
same fitness value.

Using the above set of parameters, the number of iterations
was increased to 10,000 to see if we obtain more number of
unique optimumsolutions. It is further observed that themax-
imum number of optimum solutions was found to increase to
18. Figure 8 shows the convergence graph of FPA for 10,000
iterations. Table 10 shows the list of unique optimum assem-
bly sequences obtained after 10,000 iterations.

Table 8 Precedence matrix for
punching machine assembly

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1

3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

6 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

7 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

8 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

9 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

10 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

11 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0

12 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0

13 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1

14 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1

15 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0

16 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

Assembly
directions

−z +x −z −z −z −z −z −z −z −z +y +y −y −y +x +x
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Fig. 7 Convergence graph of FPA for the punching machine assembly for 700 iterations

Table 9 List of unique optimum assembly sequences for punching machine generated by FPA for population size of 20, and maximum number of
iterations 700

Sl. 
No.

Optimal assembly sequence No. of 
orientation 
changes

No. of 
tool 
changes

Fitness 
value

1. [1     3    4     6     8     5     7     9    10    15    16     2    13    14    11    12] 3 6 0.4000
2. [1     3     4    10     9     7     5     6     8    15    16     2    13    14    11    12] 3 6 0.4000
3. [1     4     3    10     9     8     6     7     5 16    15     2    13    14    11    12] 3 6 0.4000
4. [1     3     4     9    10     6     8     7     5    15    16     2    11    12    14    13] 3 6 0.4000
5. [1     3     4     5     6     7     8    10     9    15    16     2    11    12    14  13] 3 6 0.4000
6. [1     4     3    10     9     6     5     8     7    16    15     2    14    13    11    12] 3 6 0.4000
7. [1     4     3     5     8     6     7    10     9    16    15     2    12    11    14    13] 3 6 0.4000
8. [1     4     3   6     5     8     7    10     9    16    15     2    12    11    13    14] 3 6 0.4000
9. [1     3     4     7     5     8     6    10     9    16    15     2    12    11    14    13] 3 6 0.4000
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Fig. 8 Convergence graph of FPA for the punching machine assembly for 10,000 iterations

Comparison between the results of FPA, GA, ACO and IHS
algorithms for punching machine assembly

The GA simulation runs were carried out for 700 iterations
and population size of 20. Using the same fitness function

given in Eq. 5, the maximum fitness obtained was 0.4. The
maximum number of unique optimum solutions obtained
after 700 iterations is 4. For 700 iterations, the optimum set
of GA parameters for which the maximum number of unique
optimum solutions was obtained is crossover probability of
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Table 10 List of unique optimum assembly sequences for punching machine generated by FPA for population size of 20, and maximum number
of iterations 10,000

Sl. 
No.

Optimal assembly sequence No. of 
orientation 
changes

No. of 
tool 
changes

Fitness 
value

1. 1     4  3     9    10     8     7     6     5    15    16     2    14    13    12    11 3 6 0.4000
2. 1     3     4     9    10     6     8     7     5    15    16     2    13    14    12    11 3 6 0.4000
3. 1     3     4     6     7     5     8     9    10  15    16     2    13    14    11    12 3 6 0.4000
4. 1     4     3     9    10     5     8     7     6    16    15     2    13    14    11    12 3 6 0.4000
5. 1     3     4     9    10     5     8     7     6    15    16     2    12    11    14    13 3 6 0.4000
6. 1     4     3    10     9     8     6     7     5    15    16     2    14    13    11    12 3 6 0.4000
7. 1     4     3     8     7     6     5     9    10    15    16     2    13    14    12    11 3 6 0.4000
8. 1     3     4     9    10   5     6     7     8    16    15     2    14    13    12    11 3 6 0.4000
9. 1     3     4    10     9     8     6     5     7    16    15     2    14    13    11    12 3 6 0.4000
10. 1     3     4     9    10     5     6     7     8    16    15     2  12    11    14    13 3 6 0.4000
11. 1     3     4     5     7     6     8    10     9    15    16     2    13    14    12    11 3 6 0.4000
12. 1     4     3     6     5     8     7    10     9    15    16     2    14    13    11    12 3 6 0.4000
13. 1 3     4     6     8     5     7     9    10    15    16     2    13    14    12    11 3 6 0.4000
14. 1     3     4     6     5     8     7     9    10    15    16     2    12    11    13    14 3 6 0.4000
15. 1     4     3     9    10     8     7    5     6    16    15     2    14    13    11    12 3 6 0.4000
16. 1     3     4     5     6     8     7     9    10    16    15     2    11    12    14    13 3 6 0.4000
17. 1     3     4     9    10     8     5     7     6    16    15     2    13    14  11    12 3 6 0.4000
18. 1     3     4     9    10     5     6     8     7    15    16     2    14    13    12    11 3 6 0.4000

Table 11 Comparison of the
results of GA, ACO, IHS and
FPA for punching machine
assembly after 700 iterations

GA ACO IHS FPA

Optimum fitness value 0.4000 0.4000 0.4000 0.4000

Optimum number of tool changes 6 6 6 6

Optimum number of direction changes 3 3 3 3

Average fitness value 0.4000 0.3091 0.2474 0.2941

Number of optimum unique assembly sequences 4 9 3 9

0.90 and mutation probability of 0.05. Using the above set
of parameters, as the number of iterations was increased to
10,000, the maximum number of optimum solutions was
found to increase to 8.

Similarly, the simulation runs of the ACO algorithm were
also carried out for 700 iterations and population size of 20.
Using the same fitness function given in Eq. 5, the maximum
fitness obtained was 0.4. The maximum number of unique
optimum solutions obtained after 700 iterations is 9. For 700
iterations, the optimum set of ACO parameters for which the
maximumnumber of unique optimumsolutionswas obtained
is rate of pheromone evaporation (ρ) 0.1, pheromone decay
parameter (γ ) 0.1, relative importance of pheromone (β) 0.8,
and initial value of pheromone trail (τ0) 1. Using the above
set of parameters, as the number of iterations was increased
to 10000, themaximumnumber of unique optimum solutions
was still found to be 9 i.e. the same as that obtained after 700
iterations.

Similarly, the simulation runs of the IHS algorithm were
also carried out for 700 iterations and population size of 20.
Using the same fitness function given in Eq. 5, the max-
imum fitness obtained was 0.4. The maximum number of

unique optimum solutions obtained after 700 iterations is
3. For 700 iterations, the optimum set of IHS parameters
for which the maximum number of unique optimum solu-
tions was obtained is Harmony Memory Considering Rate
(HMCR) 0.9 and Pitch Adjustment Rate (PAR) 0.1. Using
the above set of parameters, as the number of iterations was
increased to 10000, the maximum number of optimum solu-
tions was found to increase to 11.

Table 11 presents the comparison between the results of
simulation runs of GA, ACO, IHS and FPA for 700 itera-
tions for the given example of punching machine assembly
keeping population size 20 for all the four algorithms. Table
12 presents the comparison between the results of simula-
tion runs of the four algorithms for 10,000 iterations. The
numbers indicated in italics in Tables 11 and 12 are the
results obtained by the proposed FPA, which are better than
or as good as the results obtained by GA, ACO and IHS.
From the results of Table 11, after 700 iterations, the pro-
posed FPA is found to give optimum fitness value, which is
comparable with those of GA, ACO and IHS. In terms of
capability to generate multiple unique optimum solutions,
both the proposed FPA and ACO could generate 9 unique
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Table 12 Comparison of the
results of GA, ACO, IHS and
FPA for punching machine
assembly after 10000 iterations

GA ACO IHS FPA

Optimum fitness value 0.4000 0.4000 0.4000 0.4000

Optimum number of tool changes 6 6 6 6

Optimum number of direction changes 3 3 3 3

Average fitness value 0.4000 0.3543 0.4000 0.3868

Number of optimum unique assembly sequences 8 9 11 18
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Fig. 9 Comparison of convergence of the four algorithms (i.e. GA, ACO, IHS and FPA) for punching machine example for 700 iterations
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Fig. 10 Comparison of convergence of the four algorithms (i.e. GA, ACO, IHS and FPA) for punching machine example for 10,000 iterations

optimum solutions, as compared to GA which could give
only 4 unique optimum solutions and IHS which could give
only 3 unique optimum solutions, and therefore after 700
iterations, both FPA and ACO were found to be better than
GA and IHS. Figure 9 shows the comparison between the
convergence graphs of GA, ACO, IHS and FPA after 700
iterations. From a comparison of the above graphs, it is found
that convergence of FPA is initially slower compared to GA
and ACO and faster than IHS in general. However, as the
number of iterations was increased to 10,000, FPA is found
to clearly outperform GA, ACO and IHS in terms of its capa-
bility to generate more number of unique optimum assembly
sequences i.e. 18 compared to only 8, 9 and 11 sequences

that could be generated by GA, ACO and IHS respectively.
Furthermore, as the simulation run is continued for 10,000
iterations, it is observed that the average fitness of FPA tends
to catch up with the average fitnesses of GA and IHS, and
surpasses the average fitness of ACO as shown in Fig. 10 and
Table 12. It is to be further noted that in case of the GA and
IHS, the population at the end of all the simulation runs was
found to be less diverse (i.e. having lesser number of unique
solutions) compared to FPA and it comprised of multiple
copies of one or more assembly sequences as can be seen in
Tables 14 and 16. Therefore, in Fig. 10 and Table 12 we
see that the average fitnesses of GA and IHS are higher than
FPA, even though the number of unique optimum solutions

123



J Intell Manuf

Table 13 List of all the assembly sequences found in the population after 10,000 iterations of FPA for the punching machine assembly with
population size 20 (Note: 18 out of 20 solutions shown in bold are found to be unique optimum solutions with fitness value 0.4)

Sl. 
No.

Assembly sequences No. of 
orientation 
changes

No. of 
tool 
changes

Fitness 
value

1. 1     4     3     9    10     8     7     6     5    15    16     2    14    13    12    11 3  6 0.4000    
2. 1     3     4     9    10     6     8     7     5    15    16     2    13    14    12    11 3 6 0.4000
3. 1     3     4     6     7     5     8     9    10    15   16     2    13    14    11    12 3 6 0.4000
4. 1     4     3     9    10     5     8     7     6    16    15     2    13    14    11    12 3 6 0.4000
5. 1     3     4     9    10     5     8     7     6    15    16     2    12    11    14    13 3 6 0.4000
6. 1     4     3    10     9     8     6     7     5    15    16     2    14    13    11    12 3 6 0.4000
7. 1     4     3     8     7     6     5     9    10    15    16     2    13    14    12    11 3 6 0.4000
8. 1     3     4     9    10     5 6     7     8    16    15     2    14    13    12    11 3 6 0.4000
9. 1     3     4    10     9     8     6     5     7    16    15     2    14    13    11    12 3 6 0.4000
10. 1     3     4     9    10     5     6     7     8    16    15     2    12    11    14    13 3 6 0.4000
11. 1     3     4     5     7     6     8    10     9    15    16     2    13    14    12    11 3 6 0.4000
12. 1     4     3     6     5     8     7    10     9    15    16     2    14    13    11    12 3 6 0.4000
13. 1  3     4     6     8     5     7     9    10    15    16     2    13    14    12    11 3 6 0.4000
14. 1     3     4     6     5     8     7     9    10    15    16     2    12    11    13    14 3 6 0.4000
15. 1     3     4     9    10     5     8    15 16     7     6     2    11    12    14    13 5 7 0.2500
16. 1     4     3     9    10     8     7     5     6    16    15     2    14    13    11    12 3 6 0.4000
17. 1     3     4     5     6     8     7     9    10    16    15     2    11    12    14    13 3 6 0.4000
18. 1     3     4     9    10     8     5     7     6    16    15     2    13    14    11    12 3 6 0.4000
19. 1     4     3    10     9    15    16     5     7     6     8     2    13    14    11    12 5 6 0.2857
20. 1     3     4  9    10     5     6     8     7    15    16     2    14    13    12    11 3 6 0.4000

Table 14 List of all the assembly sequences found in the population after 10,000 iterations of GA for the punching machine assembly with
population size 20 (Note: 8 out of 20 solutions shown in bold are found to be unique optimum solutions with fitness value 0.4)

Sl. 
No.

Assembly sequences No. of 
orientation 
changes

No. of 
tool 
changes

Fitness 
value

1. 1     3     4    10     9     8     5     7     6    16    15 2    11    12    14    13 3 6 0.4000
2. 1     3     4    10     9     8     5     7     6    16    15     2    11    12    14    13 3 6 0.4000
3. 1     3     4    10     9     8     5     7     6    16    15     2    11    12    14    13 3 6 0.4000
4. 1     3     4    10     9     8     5     7     6    16    15     2    11    12    14    13 3 6 0.4000
5. 1     3     4     7     8     6     5    10     9    16    15     2    11    12    14    13 3 6 0.4000
6. 1     3     4    10     9     8     5  7     6    16    15     2    12    11    14    13 3 6 0.4000
7. 1     3     4     6     5     8     7    10     9    15    16     2    12    11    14    13 3 6 0.4000
8. 1     3     4     7     8     6     5    10     9    16    15     2    11    12  14    13 3 6 0.4000
9. 1     3     4     7     8     6     5    10     9    15    16     2    12    11    14    13 3 6 0.4000
10. 1     3     4    10     9     6     5     8     7    15    16     2    12    11    14    13 3 6 0.4000
11. 1     3     4 8     7     6     5    10     9    15    16     2    12    11    14    13 3 6 0.4000
12. 1     3     4     7     8     6     5    10     9    16    15     2    11    12    14    13 3 6 0.4000
13. 1     3     4    10     9     6     5     8     7    15    16     2    12    11    14    13 3 6 0.4000
14. 1     3     4    10     9     8     5     7     6    16    15     2    11    12    14    13 3 6 0.4000
15. 1     3     4     6     5     8     7    10     9    15    16     2    12    11    14    13 3 6 0.4000
16. 1     3     4     7     8     6     5    10     9    15    16     2    12    11    14    13 3 6 0.4000
17. 1     3     4     6     5     8     7    10     9    15    16     2    11    12    14    13 3 6 0.4000
18. 1     3     4    10     9 8     5     7     6    16    15     2    12    11    14    13 3 6 0.4000
19. 1     3     4     8     7     6     5    10     9    15    16     2    12    11    14    13 3 6 0.4000
20. 1     3     4     8     7     6     5    10     9    15    16    2    12    11    14    13 3 6 0.4000

generated by GA and IHS is found to be far less compared
to FPA.

The proposed FPA is able to maintain diversity in the opti-
mum solutions that are found over the generations, in other
words, most of the multiple optimum solutions are found to
be unique i.e. 18 out of 20 solutions in the population are

found to be unique optimum solutions after 10,000 iterations
of FPA as given in Table 13 (note that unique optimum
solutions are marked in bold). On the other hand, it was
observed that, in case of GA, ACO and IHS, it is not possible
to maintain the diversity in multiple optimum solutions as
the complete population finally converges to a few unique
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Table 15 List of all the assembly sequences found in the population after 10,000 iterations of ACO for the punching machine assembly with
population size 20 (Note: 9 out of 20 solutions shown in bold are found to be unique optimum solutions with fitness value 0.4)

Sl. 
No.

Assembly sequences No. of 
orientation 
changes

No. of 
tool 
changes

Fitness 
value

1. 1     3     4     8    10     9     6     5     7    16    15     2    11    12    13    14 3              7 0.3333    
2. 1     4     3     6     8     5    10     9    16    15     7     2    12    14    13    11 6 7 0.2222
3. 1     4     3     5     8     6     7    10     9    16    15     2    12    11    13    14 3 6 0.4000
4. 1     4     3     9    10     7    16    15     6     5     8     2    12    11    13    14 5 7 0.2500
5. 1     4     3     7     8     5     6     9    10    15    16     2    13    14    11    12 3 6 0.4000
6. 1     4     3     6     8    10     9    15    16     7     5    2    11    12    14    13 5 7 0.2500
7. 1     3     6     5     9    15     4     8     7    10    16     2    14    13    12    11 5 10 0.1818
8. 1     4     3     6     7     8     5    10     9    16    15     2    13    14    11    12 3 6 0.4000
9. 1     3     4     8     6     5     7    10     9    16    15     2    13    14    11    12 3 6 0.4000
10. 1     4    10     7     8    16     3     9     6     5    15     2    11    13    12    14 7 10 0.1538
11. 1     4     3     7     6     8     5 10     9    16    15     2    12    11    13    14 3 6 0.4000
12. 1     3     6     5     9     4     8     7    10    15    16     2    14    13    11    12 3 9 0.2500
13. 1     4     8     7    10    16     3     6     5     9    15     2    11    12    13    14 5 10 0.1818
14. 1     4     3     5     8     6     7    10     9    15    16     2    11    12    13    14 3 6 0.4000
15. 1     3     4     8     7    10     9    16    15     5     6     2    13    14    11    12 5 7 0.2500
16. 1     3 5     6     9     4     7     8    10    15    16     2    13    14    11    12 3 9 0.2500
17. 1     4     3     9    10     7     6     8     5    16    15     2    11    12    14    13 3 6 0.4000
18. 1     3     4     8     6     5     7    10     9    16    15     2    12    11    13    14 3 6 0.4000
19. 1     4     8     7    10     3     6     5     9    16    15     2    14    13    12    11 3 9 0.2500
20. 1     4     3     7     8     5     6    10     9    15    16     2    13    14    11   12 3 6 0.4000

Table 16 List of all the assembly sequences found in the population after 10,000 iterations of IHS for the punching machine assembly with
population size 20 (Note: 11 out of 20 solutions shown in bold are found to be unique optimum solutions with fitness value 0.4)

Sl. 
No.

Assembly sequences No. of 
orientation 
changes

No. of 
tool 
changes

Fitness 
value

1. 1     3     4     8     6     7     5     9    10    15    16     2    11    12    14    13 3 6 0.4000
2. 1     3     4     9   10     7     5     6     8    15    16     2    13    14    11    12 3 6 0.4000
3. 1     4     3     9    10     7     5     6     8    15    16     2    12    11    13    14 3 6 0.4000
4. 1     3     4     9    10     8     5     6     7    15    16   2    12    11    13    14 3 6 0.4000
5. 1     3     4     9    10     7     5     6     8    15    16     2    12    11    13    14 3 6 0.4000
6. 1     4     3     9    10     7     5     6     8    15    16     2    12    11    13    14 3 6 0.4000
7. 1     3     4     9    10     8     5     6     7    15    16     2    12    11    13    14 3 6 0.4000
8. 1     4     3     9    10     7     5     6     8    15    16     2    12    11    13    14 3 6 0.4000
9. 1     4     3     9    10     8     5    6     7    15    16     2    12    11    13    14 3 6 0.4000
10. 1     4     3     9    10     8     5     6     7    15    16     2    12    11    14    13 3 6 0.4000
11. 1     4     3     9    10     7     5     6     8    15    16     2    12    11  13    14 3 6 0.4000
12. 1     3     4     9    10     7     5     6     8    15    16     2    12    11    14    13 3 6 0.4000
13. 1     3     4     9    10     8     5     6     7    15    16     2    12    11    13    14 3 6 0.4000
14. 1     3     4 9    10     8     5     6     7    15    16     2    12    11    13    14 3 6 0.4000
15. 1     3     4    10     9     7     5     6     8    15    16     2    12    11    13    14 3 6 0.4000
16. 1     3     4     9    10     7     5     6     8    15    16     2    12    11    13    14 3 6 0.4000
17. 1     4     3     9    10     7     5     6     8    15    16     2    12    11    13    14 3 6 0.4000
18. 1     4     3     9    10     7     5     6     8    15    16     2    12    11    14    13 3 6 0.4000
19. 1     4     3     9    10     7     5     6     8    15    16     2    12    11    14    13 3 6 0.4000
20. 1     4     3     9    10     5     8     6     7    15    16     2    12    11    14    13 3 6 0.4000

optimum solutions after 10,000 iterations. This is evident
from the Tables 14, 15 and 16 (note that unique opti-
mum solutions are marked in bold). In case of GA, only 8
unique optimums out of 20 solutions in the population are
found (as given in Table 14), and in case of ACO, only 9
unique optimums out of 20 solutions in the population are

found (as given in Table 15) after 10,000 iterations and in
case of IHS, only 11 unique optimums out of 20 solutions in
the population are found (as given in Table 16) after 10,000
iterations.

In conclusion, the above results once again demonstrate
that FPA clearly outperforms GA, ACO and IHS in terms of
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its capability to generate multiple unique optimum assembly
sequences.

Discussions

It has been stated earlier that themain aimof the present paper
is not only to obtain the global optimum sequences, but also
to get as many unique optimum sequences as possible. From
the results of comparison between FPA, GA, ACO and IHS
presented in sections “Comparison between the results of
FPA, GA, ACO and IHS algorithms for motor drive assem-
bly” and “Comparison between the results of FPA, GA, ACO
and IHS algorithms for punching machine assembly”, it can
be concluded that the proposed FPA is not only able to find
out the global optimum solutions just like well-known algo-
rithms of GA, ACO and recently published IHS, but it is also
capable of generating more number of unique optimum solu-
tions than GA, ACO and IHS. The proposed FPA is able to
maintain diversity in the optimum solutions found over the
generations. On the other hand, in case of GA, ACO and IHS,
it is not possible to maintain the diversity in multiple opti-
mum solutions as the complete population finally converges
to a few unique optimum solutions.

In the proposed FPA, global search is ensured by the
global pollination rule which mimics the biotic and cross-
pollination i.e. fertilization of one flower occurring from
pollen of a flower of a different plant with pollen carrying
pollinators like birds and insects flying over long distances by
performing Levy flights. The diversity of solutions is main-
tained as the pollen (solutions in the population) is allowed
to explore the search space during global pollination so as to
promote exploration, thereby leading the algorithm explore
a widespread search space. Local search to explore the solu-
tion space around certain near optimal solutions is ensured by
the local pollination rule, which mimics the process of abi-
otic and self-pollination i.e. fertilisation of one flower, from
pollen of the same flower or different flowers of the same
plant, which often occurs when there is no reliable pollina-
tor available. The local pollination can be thus understood
to promote exploitation. In FPA, the switch probability to
switch between global and local pollination rules is used to
balance between explorations and exploitations in order to
find the optimum solution.

However, the results also show that tomaintain diversity in
the optimum solutions in the population by the proposed FPA
comes at the expense of slower rate of convergence. In fact, it
is interesting to note that the very term “convergence” refers
to a population’s decrease in diversity over time (Baeck et al.
2000). So it is perhaps not totally surprising that while trying
to maintain diversity in the optimum solutions generated,
the convergence rate of the FPA is affected. In fact, it has
been earlier reported in some papers (Chen andMontgomery
2011) that maintaining diversity tends to reduce the rate of

convergence. The reason for higher average fitness value in
the initial iterations of the evolving populations of GA and
ACO is due to fast convergence to the optimum solution and
presence ofmultiple copies of oneormore optimumsolutions
in the population, while due to the slower convergence rate
of the proposed FPA, the population as it is still evolving has
a lower average fitness. But after continuing the simulation
run for 10000 iterations in the punching machine example,
it is observed that the average fitnesses of FPA and IHS tend
to catch up with the average fitness of GA and surpasses the
average fitness of ACO. It is further found that although after
10000 iterations, the average fitness of IHS is higher than that
of FPA, the population at the end of all the simulation runs
of IHS is found to be less diverse (i.e. having lesser number
of unique solutions) compared to FPA and it comprised of
multiple copies of one or more assembly sequences.

To the best of our knowledge, most of the previous work
on assembly sequence optimization focused on determin-
ing a single feasible and optimal assembly sequence based
on minimization of tool changes and/or orientation changes
as they account for a significant proportion of the handling
cost during assembly. However, there might be many can-
didates for optimal sequences. In practice, there might be
other constraints that may be encountered during assembly
(Boothroyd 2005) leading to increase in time and cost. For
example, there may be resistance during part insertion due
to small clearances available for manipulating the part with
the tool/gripper. Sometimes, the part may be unstable after
placement or during subsequent operations and will require
realignment until it is finally secured or require holding down
by special fixturing. While the cost for special fixtures will
be significant for small batch production, it may be, on the
other hand, less significant for mass production and there-
fore should be left to the user’s discretion to include it in
the list of criteria for optimization. Therefore, our strategy in
this paper is to generate as many unique optimum solutions
as possible based on optimality criteria of minimizing tool
and orientation changes and leave it to the user to take a call
on the best sequence according to other softer optimization
criteria.

Let us consider the nine optimal assembly sequences for
the motor drive example given in Table 3. The optimal-
ity criteria used was minimization of tool and orientation
changes. The sequences were further analyzed using Design
for Assembly software tool kit (Boothroyd and Dewhurst
Inc.) and it was found that out of the above nine sequences,
the sequence nos. 2, 4, 5 and 6 give the least cost. Out of the
five other sequences, sequence nos. 1 and 7 give 8% more
cost due to the fact that in the presence of the standoffs, there
will be some resistance to insertion of motor screw due to
small clearance available for manipulating the screw driver.
As a result, assembly will take longer time. Sequence nos. 3,
8 and 9 give 11% more cost for the difficulty in insertion of
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both the sensor and themotor screw for again the same reason
as above i.e. due to small clearance available for manipulat-
ing the gripper for the sensor and for manipulating the screw
driver for the motor screw.

Likewise, if we subject the nine optimal assembly
sequences for the punchingmachine example given inTable 9
to further analysis by Design for Assembly software, it was
found that the sequence nos. 1, 5, 7, 8, 9 give the least cost.
The remaining four sequence nos. 2, 3, 4, and 6 result in 2%
more cost. This is due to the fact that in these sequences,
the U-shaped brackets are placed onto the base without first
securing them by rivets, and therefore the brackets would be
unstable during subsequent insertion of the cutters. Hence
the U-shaped brackets would require holding down by spe-
cial fixturing which will result in additional assembly time
and fixturing cost.

Multiple assembly sequences can be sometimes useful
for providing alternative routing opportunities in case of
dynamic scheduling of mixed-model assembly lines, where
multiple product varieties are processed simultaneously in
the same line. During scheduling, if it is found that one of
the assembly operations on a product type has to wait due
to unavailability of the assembly station as it is occupied
in processing another product type, then alternative process
routes can be explored to see if the assembly precedence
constraints would permit a subsequent assembly operation
to be done before. In this way, not only the manufacturing
resources can be optimally utilized but also the total assem-
bly time can be reduced by cutting down thewaiting time and
work-in-process can be reduced. However, this is only pos-
sible when there are multiple ways/sequences of assembling
the parts together for a given assembly.

Conclusions

In this paper, an intelligent assembly sequence optimization
methodology based on application of FPA has been devel-
oped to automatically generate multiple optimal assembly
sequences, subject to various assembly precedence con-
straints, based on minimisation of number of orientation
changes and tool changes. The detailed description of the
developed methodology are given including the proposed
representation scheme as well as the strategies for imple-
menting local and global pollination rules for the given
discrete search spacewhile ensuring that no component num-
ber is repeated in a generated assembly sequence and further
the introduction of a scaling factor in the equation for local
pollination, etc. The potential and feasibility for application
of the developed methodology has been illustrated with the
help of two example products and the results of FPA have
been compared with two well-known soft computing based
optimization algorithms namely, GA and ACO and also with

a recently published soft computing based algorithm, IHS.
The following are some of the important contributions of the
research work reported in this paper:

1. FPA is, for the first time, being applied to the assembly
sequence optimization problem.

2. The main challenge in applying FPA for assembly
sequenceoptimizationproblemwas the continuousnature
of the basic FPA that was first developed by Yang (2012).
This is so because the search space of basic FPA is a real
space domain, while in assembly sequence optimization,
the solution search space is discrete. Therefore, in the
proposed FPA, modifications have been made by us in
the rules for local and global pollination to make it suited
for solving the given discrete optimization problem.

3. It is to be kept in mind that the assembly sequence opti-
mization is a multi-modal optimization problem, i.e. it
may possess multiple optimum solutions (having the
same fitness function value). Although from the literature
review it is evident that many different soft computing
based optimization approaches have been developed for
determining the optimum assembly sequence, none of
the papers have addressed the need for generating mul-
tiple optimum solutions. Keeping the above in mind, the
present paper is aimed at not only obtaining the global
optimum solution, but also as many unique optimum
solutions as possible.

4. A comparison of the results of FPA simulations with
those of two other well-known algorithms of GA and
ACOand a recently published soft computing based algo-
rithm, IHS demonstrate that FPA gives optimum number
of tool changes and direction changes, which are as good
as those obtained by GA, ACO and IHS. The novelty
of the proposed FPA lies in its capability to find multi-
ple unique optimum solutions in one single simulation
run and capability to automatically maintain diversity in
the optimum solutions found over the generations. On
the other hand, in case of GA, ACO and IHS, it is not
possible to maintain the diversity in multiple optimum
solutions as the complete population finally converges
to a few unique optimum solutions. However, the results
also show that to maintain diversity in the optimum solu-
tions in the population by the proposed FPA comes at the
expense of slower rate of convergence. Infact, it has been
earlier reported in some papers that maintaining diversity
tends to reduce the rate of convergence. Nevertheless, the
proposed FPA clearly outperforms GA, ACO and IHS in
terms of its capability to generate more number of unique
optimum solutions. Therefore, it can be concluded that
FPA performs better in solving the given multi-modal
optimization problem of assembly sequence optimiza-
tion.
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A future research direction could be application of the pro-
posed FPA to solve other discrete optimization problems in
manufacturing such as machining sequence planning, dis-
assembly sequence planning, scheduling of manufacturing
systems, and so on.

References

Abramowitz, M., & Stegun, I. A. (1964). Handbook of mathematical
functions with formulas, graphs, and mathematical tables. USA:
National Bureau of Standards Applied Mathematics Series.

Baeck, T., Fogel, D. B., & Michalewicz, Z. (2000). Evolutionary com-
putation 1: Basic algorithms and operators. London: Taylor and
Francis.

Bonneville, F., Perrard, C., & Henrioud, J. M. (1995). A genetic algo-
rithm to generate and evaluate assembly plans. In Proceedings
of INRIA/IEEE symposium on emerging technologies and factory
automation, pp. 231–239, Paris, France.

Boothroyd, G. (2005). Assembly automation and product design (2nd
ed.). Florida: Taylor and Francis, CRC Press.

Cao, P. B., & Xiao, R. B. (2007). Assembly planning using a novel
immune approach. International Journal of Advanced Manufac-
turing Technology, 31, 770–782.

Chen, S., & Liu, Y. J. (2001). An adaptive genetic assembly sequence
planner. International Journal of Computer Integrated Manufac-
turing, 14(5), 489–500.

Chen, S., &Montgomery, J. (2011).A simple strategy tomaintain diver-
sity and reduce crowding in particle swarm optimization, vol. 7106
of the series lecture notes in computer science, pp. 281–290.

Choi, Y. K., Lee, D. M., & Cho, Y. B. (2009). An approach to multi-
criteria assembly sequence planning using genetic algorithms.
International Journal of AdvancedManufacturing Technology, 42,
180–188.

Design forAssemblyTool kit, Release 9.4. (2010).BoothroydDewhurst
Inc., Wakefield, Rhode Island, USA.

Dubey, H. M., Pandit, M., & Panigrahi, B. K. (2015). A biologically
inspired modified flower pollination algorithm for solving eco-
nomic dispatch problems in modern power systems. Cognitive
Computation. doi:10.1007/s12559-015-9324-1.

Gao, L., Qian, W. R., Li, X. Y., & Wang, J. F. (2010). Application of
memetic algorithm in assembly sequence planning. International
Journal of Advanced Manufacturing Technology, 49, 1175–1184.

Jimenez, P. (2013). Survey on assembly sequencing: A combinatorial
and geometrical perspective. Journal of IntelligentManufacturing,
24(2), 235–250.

Kashkoush, M., & ElMaraghy, H. (2013). Consensus tree method for
generating master assembly sequence. Production Engineering
Research Development, 8, 233–242.

Li, M., Wu, B., Hu, Y., Jin, C., & Shi, T. (2013). A hybrid assem-
bly sequence planning approach based on discrete particle swarm
optimization and evolutionary direction operation. International
Journal of Advanced Manufacturing Technology, 68, 617–630.

Li, X., Qin, K., Zeng, B., Gao, L., & Su, J. (2016). Assembly sequence
planning based on an improved harmony search algorithm. Inter-
national Journal of Advanced Manufacturing Technology, 84,
2367–2380.

Lv, H. G., & Lu, C. (2010). An assembly sequence planning approach
with a discrete particle swarm optimization algorithm. Inter-
national Journal of Advanced Manufacturing Technology, 50,
761–770.

Marian, R. M., Luong, L. H., & Abhary, K. (2006). A genetic algo-
rithm for the optimization of assembly sequences. Computers &
Industrial Engineering, 50, 503–527.

Sabarinath, P., Karthick, R., Thansekhar,M.R.,&Saravanan, R. (2015).
Energy conservation by design optimization of flywheel using
flower pollination algorithm. Proceedings of national conference
on recent trends and developments in sustainable green technolo-
gies, pp. 166–171, Chennai, India.

Tiwari, M. K., Prakash, A., &Mileham, A. R. (2005). Determination of
an optimal assembly sequence using the psychoclonal algorithm.
Proceedings of the Institution of Mechanical Engineers, Part B:
Journal of Engineering Manufacture, 219, 137–149.

Tseng, H. E., Wang, W. P., & Shih, H. Y. (2007). Using memetic
algorithms with guided local search to solve assembly sequence
planning. Expert Systems with Applications, 33, 451–467.

Wang, J. F., Liu, J. H., & Zhong, Y. F. (2005). A novel ant colony
algorithm for assembly sequence planning. International Journal
of Advanced Manufacturing Technology, 25, 1137–1143.

Wang, Y., & Liu, J. H. (2010). Chaotic particle swarm optimization for
assembly sequence planning. Robotics and Computer-Integrated
Manufacturing, 26, 212–222.

Wang,H., Rong,Y.,&Xiang,D. (2014).Mechanical assembly planning
using ant colony optimization. Computer-Aided Design, 47, 59–
71.

Xing, Y. F., & Wang, Y. S. (2012). Assembly sequence planning based
on a hybrid particle swarm optimisation and genetic algorithm.
International Journal of ProductionResearch,50(24), 7303–7312.

Yang, X.-S. (2012). Flower pollination algorithms. In X.-S. Yang (Ed.),
Nature-inspired optimization algorithms (pp. 155–173). London:
Elsevier.

Yu, J., & Wang, C. (2013). A max-min ant colony system for assembly
sequence planning. International Journal of Advanced Manufac-
turing Technology, 67, 2819–2835.

Zhang, H., Liu, H., & Li, L. (2014). Research on a kind of assembly
sequence planning based on immune algorithm and particle swarm
optimization algorithm. International Journal of Advanced Man-
ufacturing Technology, 71, 795–808.

Zhou, W., Zheng, J. R., Yan, J. J., & Wang, J. F. (2011). A novel
hybrid algorithm for assembly sequence planning combining bac-
terial chemotaxis with genetic algorithm. International Journal of
Advanced Manufacturing Technology, 52, 715–724.

123

http://dx.doi.org/10.1007/s12559-015-9324-1

	Assembly sequence optimization using a flower pollination algorithm-based approach
	Abstract
	Introduction
	Literature review
	General problem description
	Assembly sequence planning and optimization problem
	Flower pollination algorithm based optimization

	Proposed approach for assembly sequence optimization
	Problem description
	Basic principle of flower pollination algorithm
	Proposed flower pollination algorithm for assembly sequence optimization
	Proposed representation scheme
	Proposed method of implementing global pollination rules

	Proposed method of implementing local pollination rules

	Illustrative examples: results and discussions
	Example 1: Motor drive assembly
	Results of FPA simulation runs for motor drive assembly
	Comparison between the results of FPA, GA, ACO and IHS algorithms for motor drive assembly

	Example 2: Punching machine assembly
	Results of FPA simulation runs for punching machine assembly
	Comparison between the results of FPA, GA, ACO and IHS algorithms for punching machine assembly

	Discussions

	Conclusions
	References




