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Abstract

Robotic grasp planning has been one of the active areas of research in robotics but still remains a challenging prob-
lem for arbitrary objects even in completely known environments. Most previously developed algorithms had focused
on precision/fingertip type of grasps, failing to solve the problem even for fully actuated hands/grippers during envelop-
ing/adaptive/wrapping/power type of grasps, where each finger makes contact with an object at several points. Kinematic
closed-form solutions are not possible for such an articulated finger, which simultaneously reaches several given goal points.
This paper presents a framework for computing the best grasp for robotic hands/grippers, based on a novel object slicing
method. The proposed method quickly finds contacts using an object slicing technique and uses a grasp quality measure
to find the best grasp from a pool of pre-grasps. The pool of pre-grasps is generated by dividing the objects into parts and
organizing them in a decomposition tree structure, where the parts are approximated by simple box primitives. To validate
the proposed method, the developed grasp planner has been implemented on an industrial Motoman robot and a two-finger
gripper. Further, the results have been compared with the state-of-the-art in grasp planning to evaluate the performance of the
proposed grasp planner. As compared to other existing approaches, the proposed approach has several advantages to offer. It
can handle objects with complex shapes and sizes. Most importantly, it works on both point clouds taken using a depth sensor
and polygonal mesh models. It takes into account hand constraints and generates feasible grasps for both adaptive/enveloping
and fingertip type of grasps.

Keywords Grasp planner - Spatial search trees - Grasp quality metric - Underactuated robotic hand/gripper

1 Introduction

Grasping is a fundamental requirement for object handling
tasks that enables autonomous service robots to interact with
the real world environment. Over the past decades, sub-
stantial efforts have been devoted in attempts to automate
grasping using dexterous multi-fingered robot hands with a
large number of degrees of freedom [1-3]. However, grasping
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arbitrary objects even in a completely known environment
still remains a very challenging problem in robotics. Intu-
itive and previously learned knowledge play an important
role in the case of human grasping. Humans iteratively learn
to grasp and use their cognitive cues whenever encountered
with anovel object. The application of these concepts to com-
pute reliable grasps for novel objects in robotic applications
is very challenging due to several reasons.

Firstly, the mathematical complexity of the problem is
very high due to the complex geometry of the objects.
Humans tend to use different prehensile hand postures for
grasping different object geometries [4]. The selection of
such object shape specific prehensile posture comes from
learning and experience. Everyday objects are made of com-
ponent parts e.g., a cup has a handle and a cylindrical part. For
such objects, humans use grasping by parts where it searches
for the graspable parts. The concept of prehensile postures
in robotics is referred to as pre-grasp/pre-shaping, where the
hand/gripper configures itself according to the object geome-
try. The pre-grasp consists of an initial gripper/hand position,
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approach direction and its finger configuration depending
upon the object geometry. The complex objects are decom-
posed into component parts, and appropriate strategies are
applied to the object parts. Apart from the problem of decom-
posing the object in a more meaningful way, one problem
associated with the grasp selection for an individual part is
that the part may not be fully accessible to the gripper/hand
due to occlusion by the neighboring parts. Another problem
of applying the part-based method only on the individual
object parts is that it may miss a good grasp which involves
a combination of parts. While the first problem has not been
covered in the literature, some attempts were made to address
the second problem [5].

Secondly, alarge number of degrees of freedom, kinematic
constraints and actuation mechanism (e.g., an underactu-
ated mechanism) in the gripper design make grasp planning
even harder. The main objective in grasp planning is to
find the contact points between the fingers and the object
[6]. The approach taken to find the contact point decides
the difficulty level. For example, most previously devel-
oped algorithms had focused on precision or fingertip type
of grasps, where only the fingertips make contact with the
object. In such methods, first, the contact points for each
fingertip on the object surface are calculated by evaluating
some grasp quality measure criteria [7]. And then inverse
kinematics is used to find the joint displacements of the fin-
gers. In some cases, kinematic constraints are also included
during the contact computation so that infeasible solutions
can be avoided. However, such approaches fail to solve
the problem even for fully actuated hands/grippers during
enveloping/adaptive/wrapping/power type of grasps, where
each finger makes contact with an object at several points.
It is not possible for an articulated finger to simultaneously
reach several given goal points on the object generated by the
above grasp synthesis techniques. Even if there is no reacha-
bility problem, the contact positions on the object surface
alone are not sufficient to compute the finger joint posi-
tions for an under-actuated hand/gripper. Thus, it is necessary
to compute all the contact points and finger joint positions
simultaneously to successfully perform this type of grasp.
This prompted the need for novel methods to handle such
type of grasp.

In this paper, the problem of finding best grasp for
robotic hands/grippers based on a novel object slicing method
will be discussed. The objective of this work is focused
on addressing the following research gaps: 1) automat-
ing the pre-grasps generation for arbitrary unknown 3D
objects; 2) handling both enveloping/adaptive/power and pre-
cision/fingertip types of grasps; 3) making the developed
grasp planner work on point cloud data without any expensive
processing such as surface reconstruction. Further, a com-
prehensive comparison with the existing state-of-the-art in
grasp planning has been given to justify its relevance as well
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as evaluate the performance of the proposed method in terms
of computation time and robustness. Finally, the proposed
method has been implemented to support three-different
gripper/hand designs, and physical experiments have been
performed using a two-finger gripper mounted on a Motoman
robot.

This paper is an extension of our previous work [8].
The following are the major differences, improvements and
extensions from the previous version. An automated object
part-based pre-grasp generation has been introduced, where
an object is decomposed into parts, and an appropriate type
of grasp is applied on each part rather than on the object
itself as in [8]. Unlike the previous version, this version
can handle objects represented as point clouds as well as
polygonal meshes. Furthermore, a new proximity query algo-
rithm has been proposed, which computes contacts between
an object and the robot hand modeled as a point cloud as
well as triangulated mesh. A more comprehensive compar-
ison with the existing state-of-the-art including some of the
recently reported work has been presented, whereas the pre-
vious version was compared with only one grasp planner.
Implementation has been done on a bigger set of objects com-
prising common household objects from two different object
datasets found in the literature. Most importantly, physical
results have been presented to demonstrate the practical rel-
evance of the grasp planner.

1.1 Contributions

The important contributions reported in this paper are as fol-
lows. A novel grasp planner has been introduced into the
robotic grasping community. Firstly, the proposed method
can handle arbitrary 3D objects with complex shapes and
sizes. Secondly, the grasp planner is equally effective on
objects represented as polygonal meshes and point clouds
without the need for computationally expensive processes
such as surface reconstruction, as compared to the exist-
ing ones, which mostly relies on polygonal mesh model,
Thirdly, an automated framework for encoding blocked areas
(not reachable to the fingers) and associated rules have been
introduced in the pre-grasp generation stage, which helps
the planner finding natural like grasps (inspired by the way
the humans grasp objects). Fourthly, the planner can gener-
ate feasible grasps for both the adaptive/enveloping (which is
more challenging and comparatively less work has been done
in the literature) and the fingertip types of grasps by taking
into account the hand constraints (e.g., underactuation, joint
limits, etc.). Most importantly, the paper also presents how
readily the grasp planner can be implemented on a real robot
platform.

The rest of the paper is organized as follows. Section 2
discusses the related work in the area of grasp planning and
different grasp quality metrics. Section 3 presents the pro-
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posed grasp planning framework for unknown 3D objects.
Section 4 illustrates implementation results for different
types of grasps and compares them with the state-of-the-art.
Finally, Sect. 5 gives conclusions and scope for future work.

2 Related work

In the following, some of the previous works related to the
proposed approach are discussed. An extensive review of
recent developments in the area of grasp planning for 3D
objects using analytical as well as empirical approaches can
be found in [2]. Although, grasp planning has been one
of the active areas of research in robotics, much less work
has been found in areas where enveloping/wrapping/power
type of grasps is considered. Miller et al. [9] addressed the
problem by approximating complex unknown objects into
primitives shapes e.g., boxes, spheres, cylinders and cones.
Then, an appropriate type of grasps was selected for each
of the primitive shapes. Li et al. [10] computed enveloping
grasps for multi-fingered robotic hands based on the idea of
maximizing the contact surface between the object and the
hand surface. Another grasp planner for power grasp (i.e.,
enveloping grasp) based on object surface matching was pre-
sented in [11], where the best points for opposing grasp using
opposing fingers were found by matching local curvature of
the object surface. Li et al. [12] proposed a novel geometric
algorithm to find enveloping grasp configurations for a multi-
fingered hand. The proposed method performs a low-level
shape matching by tightly wrapping multiple cords around
an object to quickly isolate potential grasping regions. From
these grasping regions, hand poses and contact points can be
computed. Xue et al. [13] proposed an efficient method to find
all the contact points between a robotic hand and an object.
They used the swept volume method to generate a volume by
moving each finger along an arbitrary trajectory. Then, a con-
tinuous collision detection (CCD) algorithm was applied to
find all the possible contact points between the swept volume
and the object through the entire configuration space of each
finger. Saut and Sidobre [14] computed grasp configurations
based on an approximation of the intersection between the
object surface and the finger workspace and then, selected
the best grasp according to a quality score. Shi and Koonjul
[15] presented a grasp planning algorithm based on a simple
strategy called finger curling planes (FCP) for real-time bin-
picking applications, where multiple 2-D polygon profiles of
the object are generated for contacts computation with the
finger by parallel planes cutting through the 3D object.

In general, most of the previous work focused on the pre-
cision/fingertips type of grasps. Roa and Suarez [16] worked
toward ensuring precision grasp in robotic hands for 3D
objects. It was found that mechanical hands hardly touch
an object precisely at the computed contact points using

previously developed algorithms. Thus, the concept of inde-
pendent contact regions was introduced where a finger can
make contact anywhere inside each of these regions, despite
the exact contact position. The independent regions (ICRs)
were generated by growing them around the contact points
of a given starting grasp. Rosales et al. [17] determined hand
configuration relative to the object so that a given region on
the surface of the hand establishes contact on its correspond-
ing specified object region. They formulated the problem as
a system of polynomial equations of a special form and then
exploited this form to isolate the solutions using the linear
relaxations technique. Unlike the previous algorithms, free-
form regions on the hand and object surfaces can be specified
and always return a solution whenever one exists. Song et al.
[18] voxelized 3D objects and built a contact score map on
the object, which shows whether a particular voxel can be
touched or not by the fingers/palm. Then they found a set
of target contacts on the object surface based on the score
map. In [19], a framework for the fingertip grasp synthesis
and in-hand grasp adaptation was presented. Hang et al. [20]
formulated optimal grasping as a path finding problem and
introduced the concept of super-contact. Zheng [21] com-
puted the best grasp by finding contact location in a discrete
point set based on combinatorial search.

Besides the complexity in the object geometry, the hand
internal degrees of freedom and those in the wrist of the
hand create a huge grasp search space. The internal degrees
of freedom (DOFs) in the hand along with 6 DOFs in the
robot arm make the grasp space too large to be exhaustively
searched. Many approaches are there in the literature to find
good wrist position and orientation in this huge search space.
Cutkosky and Wright [22] attempted to classify hand pos-
tures and find grasp taxonomies needed for robot gripper in
a manufacturing cell. Predefined prototypes of grasp have
been used to reduce the search space [23]. Object part-based
grasp selection had been used in the past, where the object
was decomposed manually, and the parts were approximated
using primitive shapes e.g., planes, boxes, cones, spheres or
cylinders [9]. Goldfeder et al. [24] used Super Quadrics (SQs)
as generic shape primitives to automate the process and orga-
nized the object parts in a decomposition tree. More, recent
work [25] had argued that successful grasp selection depends
upon the geometry rather than the object identification and
put more emphasis on efficiency over accuracy in the shape
approximation. A single view 3D point cloud data taken using
a depth camera was approximated by simple box primitives.
Then heuristics were used to select graspable box faces and
finally, an off-line trained neural network gives the best grasp
hypothesis. Li et al. [12] employed deterministic sampling on
the spherical surface constructed around the object to find the
initial hand position and approach direction. Shape diameter
function (SDF) was used by Vahrenkamp et al. [26] to seg-
ment objects into parts and then principal component analysis
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Fig. 1 a Four-finger anthropomorphic hand, b Three-finger underactu-
ated hand, ¢ Two-finger adaptive gripper

was applied on the parts to align the hand with the corre-
sponding object part. The main drawback of the method is
that it can only be applied on a polygonal mesh of the object.

3 Grasp planner

This work is mainly focused on automating robotic grasping
of 3D objects having arbitrary shapes and sizes. The pro-
posed grasp planner is not limited to a hand/gripper having
a specific number of fingers or actuation mechanisms. The
core idea of the planner has been described in the subsequent
sub-sections and then its implementation has been shown
on three-different hands/grippers as illustrated in Fig. 1 to
demonstrate the generic nature of the planner. The proposed
grasp planner assumes that complete information about the
object geometry is available. It works on both 3D point clouds
and the object represented as polygonal mesh. A complete
framework of the proposed grasp planner is shown in Fig. 2.
The workflow can be divided into three phases. In the first
phase, the object is decomposed using simple box primi-
tives, and a pool of pre-grasps is generated for the object
parts where a pre-grasp consists of an initial hand position,
approach direction and the finger configuration of the hand.
Then, an object slicing-based method is applied in the second
phase to quickly find the contact points on the object for eval-
uating the quality of the grasps. In the third phase, using the
mesh model of the hand, contacts and finger joint displace-
ments are computed by closing the fingers until contacts are
found.

3.1 Robotic hands/grippers

For showing the implementation of the grasp planner, three
hands/grippers have been chosen from the wide range of
robotic hands/grippers, covering different aspects ranging
from the number of fingers to actuation mechanisms. The
first one is a four-finger fully actuated anthropomorphic hand,
which covers the humanlike hands as shown in Fig. 1a. This
hand has one thumb and three identical opposing fingers,
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Fig.2 The framework of the proposed grasp planner

each having three links. The second one is a three-finger
underactuated hand [27], and it consists of three identical
fingers, each having three links namely knuckle, middle and
distal as shown in Fig. 1b. The thumb finger has two joints,
and its base is fixed on the palm. The other two fingers have
three joints each, and the base joints help the fingers to spread
sideways synchronously around an axis perpendicular to the
palm surface. The underactuation mechanism [28] works in
such a way that a link in an articulated finger only moves
after its previous link touches an object or maximum joint
limit is reached. Finally, the third one is a simple two-finger
adaptive gripper having two links in each finger as shown in
Fig. 1c. The links of a finger move in such a way that once
a link stops moving, the other link continues to move and
wrap around the object. Most of the parts of the grasp plan-
ner are not limited to a specific type of hand/gripper, however,
some minor adjustments may be needed to set up the planner
for different hand/gripper configurations as mentioned in the
following sub-sections.

3.2 Object decomposition

The data captured using a dense stereo camera or a depth
sensor is a cloud of 3D points, which are further processed
to reconstruct the object surface and stored as a polygonal
mesh. It is very difficult to come up with a grasp strategy
from this kind of low-level representation of the object. A
3D object can be represented using a set of shape primitives
(e.g., planes, boxes, spheres or cylinders). A more generic
approach is to use Super Quadrics (SQs) as shape primi-
tives, which offer a large variety of different shapes. Shape
primitives such as super quadrics give a good approximation
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Fig.3 a A complete point cloud of a dog model, b bounding box, ¢ two
child boxes resulted from the root box in the first iteration, d final
decomposed object parts approximated by three boxes

of the object but are difficult to process. Here more focus is
given on the efficiency (in terms of computation) of the grasp
planner by using simple boxes as shape primitive for approx-
imating the objects and then the types of grasps are selected
per the criterion described in the following Sect. 3.3. The
object decomposition is done by using a fit and split algo-
rithm based on Minimum Volume Bounding Box (MVBB)
[29]. The output of the object decomposition algorithm is a
set of Oriented Bounding Boxes (OBBs) organized in a tree
structure. The algorithm starts with tightly fitting the data
points by a bounding box having minimum volume. Then, it
iteratively splits the box and its data points such that the new
point sets yield better box approximations of the shape. The
splitting step is about finding a plane that results in a good
split of the parent box. A good split is the one which mini-
mizes the summed volume of the two resulting child boxes.
Such a method demands extensive search and comparison of
alot of planes with different positions and orientations to find
a good split plane. Therefore, only the planes parallel to the
parent box are considered for the potential partitioning. The
splitting is carried out iteratively until a box is not dividable
or reaches a minimum limit of data points as shown in Fig. 3.

3.3 Grasp type selection

The idea of dividing an object into a decomposition tree is to
capture the local shape descriptions and apply an appropriate
type of grasp to respective parts of the object. Moreover, it
enables the use of efficient global shape descriptor like Prin-
cipal Component Analysis (PCA), which is not possible if
the object is considered as a whole. In this sub-section, the
object parts are classified into number object categories such
as one-dimensional, two-dimensional and three-dimensional
objects according to their shape distribution in 3D space
as shown in Fig. 4. Further, the three-dimensional object is
divided into smaller and larger objects based on its volume
while a larger object is divided into longer and symmetrical as
per shape distribution. Then appropriate grasp strategies such
as cylindrical, spherical and fingertip grasps are assigned to
each part of the object. The application of PCA [30] on the
data points of an object gives information about the object

Object Parts
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~a &
[ Fingertip grasp ]
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Fig. 4 Object Classification using PCA on object shape information and
respective grasp type

distribution in 3D space, for example, eigenvalues denote the
extent of object distribution along with the principal direc-
tions while eigenvectors give the principal directions.

Let us suppose that an object is a set of 3D points
P C R?, and the eigenvalues of the PCA applied on the
points set P C R3 be denoted as A1, Ay and A3 where,
A1 > A2 > A3. Then, the object is classified into a number of
categories using these three components along with volume,
for example, the principal component of a one-dimensional
object is significantly larger than the other two components
i.e., A1 > Ao > A3 (the ratio of 5 has been found for
the object dataset used in this paper), for two-dimensional
objects A1 = Ay > A3 (the same ratio of 5), and for three-
dimensional objects A = A = 3. In the case of the one
or two-dimensional objects, at least one component is sig-
nificantly larger (at least 5 times) than the others. But for the
three-dimensional object, each component does not differ
significantly from the other. Now, three-dimensional objects
can be a large one or a small one depending upon the actual
volume of the object. So, actual dimensions (absolute val-
ues of eigenvalues) along the principal components are used
to differentiate larger and smaller three-dimensional objects.
Finally, a larger object is further divided into longer (e.g.,
cylinder) and symmetrical (e.g., sphere, cuboid, etc.) objects
using the same principle applied for one-dimensional object
but with a lower margin, i.e., foralonger object .| > hp> A3
(the ratio of 2).

Different finger configurations enable the hand/gripper to
handle a wide range of possible form/force closure grasps.
Depending upon the size and shape of the objects shown in
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Fig.5 a Cylindrical object grasp, b spherical object grasp, ¢ two-
dimensional flat object grasp, d smaller object grasp using fingertips

Fig. 4, a total of three types of grasps has been recognized
for this work e.g., cylindrical grasp, spherical grasp and fin-
gertip grasp. The assignment of grasp type to each type of
object is inspired by the way the humans grasp an object.
For example, a small object cannot be grasped by wrapping
the fingers around it but has to use only fingertips, on the
contrary use of fingertips for a larger object makes the grasp
weaker, aligning the fingers perpendicular to the dominant
eigenvector for cylindrical objects (longer) while wrapping
the fingers around the spherical objects (symmetrical). The
examples of grasping using the three-finger hand shown in
Fig. 5 illustrate the concept. Minor changes are required for
other hands/grippers as mentioned in the following sections.

3.3.1 Cylindrical grasp

A three-dimensional longer object can be grasped using this
configuration. In this configuration, the palm provides sup-
port to the object, and all the fingers wrap around the object
from two opposite sides as shown in Fig. 5a. Other similar
objects can be grasped using this method.

3.3.2 Spherical grasp

Generally, three-dimensional symmetrical objects can be
grasped using this configuration. Similar to a cylindrical
grasp, the palm provides support to the object. In this grasp,
all the fingers place themselves around the object and wrap
around the object as shown in Fig. 5b. The spreading of the
opposing fingers is similar to the abduction/adduction motion
in an anthropomorphic hand. It may be noted that in case of an
anthropomorphic hand without abduction/adduction motion
or a two-finger gripper, the spherical grasp is replaced by a
cylindrical grasp.

3.3.3 Fingertip grasp

Two-dimensional objects can be grasped using the fingertips
of all the fingers from two opposite sides of the object as
shown in Fig. 5(c). Small three-dimensional objects can be
also grasped using the fingertips of the two opposite fingers
as shown in Fig. 5(d). The two-finger gripper grasps both
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the two-dimensional and small three-dimensional objects in
similar ways using its two fingertips.

3.4 Reachability, Blocking and Face Mask

Let us suppose that an object is a set of 3D points P C R3,
then the decomposition technique partitions the object into
a set of object parts P = {Py, .. P,} which are enclosed by
a set of boxes B = {Bj, ..., B,}, where, n is the number
of partitions. The type of grasps for each of these boxes
is selected from the types of grasps available for a partic-
ular hand/gripper. Each grasp type puts some constraints
on the hand/gripper in terms of finger configuration and
hand/gripper alignment with the object. To further reduce the
large number of hand/griper approach and alignment possi-
bilities, a reachability analysis is performed. A hand/gripper
can reach a box from its six rectangular faces. Now, the two
child boxes of a parent box share the common face, and
some faces may be occluded by neighboring boxes in the
decomposition tree, so all the faces cannot be reached by
the hand/gripper. Further, such faces block the fingers when
the hand/gripper tries to reach from its adjacent free face.
As shown in Fig. 6a, b, each face of a box has four adjacent
faces and can be in two states, free or blocked, denoted by
white and black colors. The states of the faces are coded in a
face-mask matrix (0 for free and 1 for blocked), where each
row denotes a face and its four adjacent faces as shown in
Fig. 6¢. Atthe time of pre-grasps generation, the hand/gripper
is aligned only with the free faces. In addition, a blocked
adjacent face eventually reduces the free face-area e.g., a
hand/gripper cannot orient its fingers toward the up-face (u)
when it is at center-face (c) near to the up-face (u) as shown
in Fig. 6b. So, to effectively avoid such situations, the face
is divided into sub-faces and associated with the adjacent
faces. Only those sub-faces having free adjacent faces are
considered for the generation of pre-grasps. The division of
the face-area depends upon the types of grasp as shown in
Fig. 6d, e.

The encoding scheme can be further extended for obstacle
avoidance, where a neighboring object blocks the path of
the gripper approaching the graspable object. This can be
done by checking reachability of the bounding box of the
neighboring objects along with the graspable object parts at
the time of face-mask encoding. This serves two purposes;
the gripper avoids hitting neighboring objects and reduces
the computation time by not generating pre-grasps on the
obstructed sides.

3.5 Generation of pre-grasp pool

In the next step, a pool of pre-grasps is generated by sampling
enclosing surface areas around the object parts as given in
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Fig. 6 a Bounding box with a blocked face colored black, b center face
having four adjacent faces left, down, right and up denoted by (1, d, r
and u), respectively, ¢ face-mask matrix coded with 0 and 1 for free
and blocked, respectively, d, e Sub-face schemes for cylindrical and
spherical types of grasps, f an example of how a blocked face eventually
blocks an adjacent sub-face

algorithm 1. A pre-grasp consists of an initial hand/gripper
position, orientation and finger configuration. The orientation
gives the approach direction of the hand/gripper toward the
object. The enclosing surface is predefined for each grasp
type (e.g., sphere for spherical grasp, cylinder for cylindrical
grasp, etc.). First, a surface is created which fully encloses
the bounding box of the object part (e.g., the gray sphere
encloses the box as shown in Fig. 7a). Then all the sub-faces
having free adjacent faces are found out by using the face-
mask and projected onto the created enclosing surface (e.g.,
the black triangular sub-face of the bounding box projected
on the enclosing sphere as shown in Fig. 7a and its exploded
view in Fig. 7b). The projected areas are sampled to get the
hand/gripper initial position, where the choice of sampling
surface decides the hand/gripper approach direction.

For the spherical grasp, the sub-faces are projected onto
the surface of a sphere enclosing the object part, and the
projected sub-faces are sampled at a fixed interval, where the
hand/gripper approaches along the radial vector as shown in
Fig. 7a, b. The cylindrical surface enclosing the object part is
used to project the sub-faces for the cylindrical type of grasps
as shown in Fig. 7c, d, where the hand/gripper moves along
the radial vector for the circular surface and axial-vector for
the flat surface of the enclosing cylinder. An enclosing circle
is sampled for the fingertip type of grasp (two-dimensional
objects), and the hand/gripper is oriented radially as shown
inFig. 7e, f. Similar to the spherical grasp, a spherical surface
is used for the fingertip type of grasp (small objects).
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Fig.7 Different sampling strategies for the generation of pre-grasp
pool, a the created spherical surface (gray) enclosing the bounding
box and sub-face (triangular black) projected on the enclosing surface
b exploded view of the projection and sampling of the projected surface,
¢, d enclosing surface and exploded view of sampling for cylindrical
grasp, e, f projection on an enclosing circle and its sampling for the 2D
object using fingertip grasp

Algorithm 1: Generation of Pre-Grasp Pool

Procedure PreGraspGeneration(DataPoints, Parent = root)
DTree = ObjectDecomposition(DataPoints)
Label:Node = GetCurrentNode(DTree, Parent)

If Graspable(Node)
GraspType = GraspSelection(Node)
NeighNodes = NeighboringNodes(Node)
BFaces = BlockedFaces(Node, NeighNodes)
FaceMask = GraspableFaces(NeighNodes, BFaces)
PreGraspPool =
SurfaceSampling(Node, FaceMask, GraspType)
If NotLeafNode(Node)
Parent = LeftChild(Node)
GoTo: Label
Parent = RightChild(Node)
GoTo: Label
End

@ Springer



Intelligent Service Robotics

Finger

(a) (b)
Points in
Leaf Nodes Leaf Nodes

Hiw |

RIR

(©) (d)
. % Contact
Plane Projected Point
\ Points
#f;..s., N
ok %,
Projected
Points
(e ®

Fig.8 a, b Object Slicing along the finger plane, ¢ intersection of -
planes and leaf nodes of the Octree, d data points of the object inside
the leaf nodes, (e) Projected points on the plane and f contact between
a finger and the projected points

An object consists of a number of parts and different grasp
strategies can be applied to the object parts as per the Sect.
3.3. The disadvantage of applying the said method only on
the individual object part is that it may miss a good grasp
which involves a combination of parts. So to avoid such a
scenario, the object parts are stored in a decomposition tree
structure (an example shown in Fig. 12) where nodes repre-
sent the object parts, and the two parts decomposed from a
part are denoted by children (left and right) nodes and parent
node, respectively. Then, the process of pre-grasp sampling
is iterated over the decomposition tree of the object starting
with the part at the root and traversing downwards. At each
node, two conditions are checked to decide whether further
steps will be performed or not. Firstly, if it has no child node
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Fig.9 a, b The perpendicular planes covering the rectangular and
circular palm area, respectively, ¢ a close perspective view of two per-
pendicular planes and the palm, and d computing the palm contacts by
finding the nearest point from the two sets of projected points

or one of the children is of the type small object, then only
further steps are carried out for the current node to generate
pre-grasps. Secondly, actual dimensions are checked against
athreshold value to decide whether the hand/gripper can hold
that particular part or not. For example, there might be a sit-
uation where a big part cannot be fitted in a hand/gripper but
its child parts can be separately fitted. The second condition
successfully prevents a big part but passes the children for
the further steps of the pre-grasp generation. All the samples
generated from the decomposition tree are stacked to form
the pool of pre-grasps for an object.

Algorithm 1 takes the point cloud of an object as input and
sets the parent to the root node (i.e., treat the object as a single
graspable object for the first iteration). Then the if condition
checks for whether the part is graspable or not, if graspable
then it proceeds further otherwise looks for graspable child
nodes. The GraspSelection()function selects an appropriate
type of grasp for the graspable node as per the method dis-
cussed in the Sect. 3.3. Next for finding the graspable faces
of the node, first, it finds the neighboring nodes using the
NeighboringNodes() function and then it looks for the faces
blocked by its neighboring nodes using the BlockedFaces()
function. Then the GrsapableFaces() uses the blocked faces
information to compute the face-mask as discussed in Sect.
3.4. Finally, the SurfaceSampling() generates the pre-grasps
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for the graspable node and stores them in PreGraspPool. The
second if condition checks for whether the tree traversal
should continue to the next child nodes or stop to its cur-
rent node. Here, the NotLeafNode() function checks the first
condition discussed in the previous paragraph. Then, the Left-
Node() and RightNode() functions retrieve the left and right
child nodes, respectively, and repeat the method for child
nodes by jumping the execution to the label.

3.6 Object slicing algorithm

A novel object slicing-based method is proposed to quickly
find the grasp points on the object for evaluating the grasp
quality. The main idea is that a finger does not make contact
with the whole surface of an object. If the object is sliced
along the plane of finger flexion, then the finger only makes
contact with that slice of the object as shown in Fig. 8a, b.
Now, if the data points inside the slice are projected on the
plane, then the contact points can easily be computed by
considering the finger links as line segments of actual link
length and zero thickness. In actual implementation, the data
points on the object surface are represented in an Octree data
structure for fast spatial search. An Octree [31] is a tree data
structure often used to partition a 3D space by recursively
subdividing it into eight octants. Then, all the leaf nodes of the
Octree that are intersecting with the planes are computed, and
all the data points within these leaf nodes are projected onto
the plane as shown in Figs. 8(c), 8(d) and 8(e), respectively.
Next, the contacts between the projected points and the finger
links are computed as shown in Fig. §(f).

Here, the same idea is extended to find the contact points
on the palm by considering two perpendicular planes cover-
ing the palm area. The two planes are perpendicular to each
other and the palm surface while passing through the center of
the palm. The extent of the perpendicular planes to cover the
palm area depends on the shape of the palm area. The palm
surface is mostly rectangular or circular in shape (e.g., the
four-finger and three-finger hands, respectively) and can be
covered by appropriately choosing the extents of the planes
as shown in Fig. 9a, b.

In this method, for each pre-grasp in the pool, steps in
algorithm 2 are applied on the octree structure of the object
to compute the possible contacts between the hand/gripper
and the object. First, the possible contact points with the palm
are computed. Each pre-grasp from the pool gives the initial
hand/gripper position and approach direction relative to the
object. To find the possible palm contacts, the hand/gripper
is placed at the initial position with the palm normal directed
along the approach direction. Then, a pair of planes perpen-
dicular to each other and the palm surface while passing
through the center of the palm are chosen as shown in Fig. 9c.
Next, all the leaf nodes of the octree that are intersecting with
the planes are computed and data points within these leaf

nodes are projected onto those respective planes as shown in
Fig. 9d. Now, the nearest projected points are the first which
make contact with the palm as shown in Fig. 9d. For the fin-
gertip grasps, the hand/gripper is kept at a fixed distance from
the object, which depends on the maximum reach of the fin-
gers. Once the type of grasp is decided and the hand/gripper
is positioned and aligned with the object, each finger flexes
on a fixed plane as shown in Fig. 8a. Similarly, all the data
points within the leaf nodes intersecting with the plane of
finger flexion are projected onto the plane. Next, the flexing
joints are closed one by one until the respective link makes
contact with the projected points on the plane or maximum
joint limits are reached as shown in Fig. 8f. These steps are
followed for all the fingers associated with a particular type
of grasp.

Algorithm 2: Object slicing based fast contact computation

Procedure GraspPointsComputation
DataPoints = ReadObject()
OT = OctreeCreation(DataPoints)
PreGraspPool = PreGraspGeneration(DataPoints)
Loop: For each PreGrasp in PreGraspPool
Contacts = ComputeContacts(OT, PalmPlane, Palm)
Loop: For each Finger
Loop: For each Link
Contacts =
ComputeContacts(OT, FingerPlane, Link)
End
End
End

Procedure ComputeContacts(OT, Plane, Link)
Loop: For each Plane
LeafNodes = Intersection(OT, Plane)
Points = PointsFrom(OT, LeafNodes)
ProjectedPoints = Projection(Points, Plane)
If Link == Palm
Contact =
FindNearestPoints(ProjectPoints, Link)
Else
Contact =
FindFirstPoints(ProjectedPoints, Link)
End

3.7 Evaluation of grasp quality

Once, all contacts between the finger links and object are
determined, the grasps are ready to be evaluated for stability
using grasp quality measure. Two different quality metrics
are combined to form a compact grasp quality metric sig-
nifying the efficiency of the grasp. The first quality metric
determines the maximum external disturbance wrench that
can be resisted within a unit grasp wrench space by a grasp
[32]. The second quality metric tries to grasp the object clos-
est to the middle.

The steps involved in finding the first quality metric can be
best found in Miller and Allen [33]. Let n is the total number
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Normal

Fig. 10 Approximation of friction cone with an 8 sided pyramid of unit
length

of point contacts, and g is the static friction coefficient.
Then, the wrench space is the set of forces and torques that
can be applied by the fingers on the object through point
contacts and is given as follows.

o fij
= (a7)) .

where f; ; is the j-th boundary force vector of the eight-
sided pyramid as shown in Fig. 10 at the i-th point of contact.
d; is the distance from torque origin to the i-th point of con-
tact. Multiplier A is chosen to enforce ||T||< || f].

The convex hull from the wrench space represents the set
of wrenches that can be applied on the object given that the
sum total of the contact normal forces is one.

W = ConvexHull(U?{wi,l, Wi, ....., w,~,m}> 2)

The grasp is stable only if the origin of the wrench space
lies within the convex hull. The one quality measure that is
widely accepted is the distance € from the origin to the closest
facet of the convex hull. This signifies the smallest maximum
wrench that can be exerted by the grasp. The scale of € varies
from O to 1, closer to 1 signifies a more efficient/stable grasp.
However, this measure is not invariant to the choice of torque
origin. The volume v of the convex hull can be used as an
invariant quality measure.

Intuitively, on a daily basis if the object is grasped at the
middle, then it becomes easier to hold the object. Torque
induced by the gravity becomes greater as the objects are
grasped further from the center of gravity. So, the second
quality metric d is defined as the distance between the center
of all contact points and the center of gravity. The normalized
quality metrics € or v, and d are combined to form a compact
grasp quality metric as follows.

1

Q:(1+d)

+X 3)

€,distance measure of the convex hull

Where x =
v, volumn measure of the convex hull
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The above quality measure is used to rank all the grasps
in the grasp pool, and the best grasp is chosen.

3.8 Computation of contacts and joint
displacements

In the previous sub-section, grasps have been computed
by object slicing-based method, which quickly finds the
hand/gripper position, orientation and contact information.
A polygonal mesh model of the hand/gripper can be used to
find the contact information for all the grasps in the pool, but
the time taken for such procedure is very high compared to
the proposed approach. For example, the times required for a
single collision query for mesh-mesh and point cloud-mesh
of 5 k points are, respectively, 50-60 ms and 500-1000 ms
by Proximity Query Package (PQP) library [34] and Flexible
Collision Library (FCL) [35], respectively. So, once the best
grasp is found, a more accurate method is applied to find the
precise contacts and the hand/gripper joint displacements.
The fingers are closed until contacts are found or maximum
joint limits are reached.

3.8.1 Point cloud-mesh

In order to handle point cloud data, a new proximity query
algorithm is proposed, which computes contacts between
an object and the robot hand/gripper modeled as a point
cloud and triangulated mesh, respectively. Here, it is assumed
that a complete point cloud of the object is available. The
point cloud of the object and the triangulated mesh of the
hand/gripper are represented in the Octree data structure.
Oriented Bounding Boxes (OBBs) are used to tightly fit the
geometry of the articulated hand/gripper links and the object.
Then the Octrees are constructed for each of the OBBs. The
proximity query algorithm is made faster by culling the points
on the object and triangles on the finger links that are not
likely to make contacts. The culling is done in two stages.
In the first stage, an intersection test is done between the
bounding box of a link (which is the root node of the link
Octree) and the object Octree. A temporary bounding box
is created around all the points within the leaf nodes that
are intersecting with the bounding box of the link. Next,
another intersection test is performed between the tempo-
rary bounding box and the link Octree, which gives all the
possible triangulated facets that can be in contact with the
object. Further, culling is done in the second stage before
finally pair wise closest distance computation between the
points on the object and triangulated facets on the hand is
performed. In the second stage, it tries to find a separating
plane that separates the points on the object and the trian-
gulated facets on the link found in the first stage. A plane
passing through the side of the temporary bounding box and
near to the link is chosen for the test. If no triangle intersects
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Fig. 11 Object decomposition results at different splitting stages. The
first two objects are polygonal mesh models, and the rest are point cloud
models

with the plane then the algorithm jumps to the next iteration.
Otherwise, further steps are performed only on the triangle
faces that are intersecting with the plane. Pairwise minimum
distances between the points on the object and the triangle
faces are computed, and the pairs having distance less than a
threshold are supposed to be in contact.

3.8.2 Mesh-mesh

The robot hand and the objects are modeled as triangulated
mesh. First, the hand is placed according to the best grasp
found as described in the Sects. 3.1, 3.2, 3.3, 3.4, 3.5, 3.6,
3.7. Then, the Proximity Query Package (PQP) library [32]
is used to find the contact information, where all the fingers
are moved until contacts are found or maximum joint limits
are reached.

Three
fingertips

4 Spherical
" grasp

Fig. 12 Type of grasp selection and pre-grasps generation at different
stages of the decomposition tree

4 Results and discussions

The implementation has been shown on three-different grip-
pers/hands as illustrated in Fig. 1. A total of forty-eight
common household objects and toys have been chosen for
performing grasping. Eighteen mesh models are taken from
the Princeton Shape Benchmark [36], twenty-four scanned
point clouds of real objects are taken from the KIT dataset
[37], and six objects are designed. The scanner Konica
Minolta Vi-900 had been used to build the KIT dataset, which
has a high point accuracy of 50-170 pwm at a distance of
0.6 m. All the chosen objects for the evaluation have data
points within the range of 2500-3000 points and around 5000
triangle faces. The implementation has been done using Mat-
lab platform running on a PC with configuration Intel Core
i5 4570U CPU at 3.2 GHz, 16 GB RAM. Here, only results
of a subset of 10 objects with diverse shapes and sizes from
the total of 48 objects are given.

4.1 Pre-grasps generation results

Figure 11 shows the object decomposition results at different
splitting stages, where the parent box volume to the summed
child boxes volume ratio of 0.9 and minimum data of 500
points (experimentally found over the object dataset of 48
objects) in a box are used as termination conditions for the
splitting. The decomposition trees have 3, 3, 3, 3, 2 and 1
number of parts for the horse, phone, dog, pony, mug and
toy-car, respectively. Figure 12 shows an example of the tree
traversal for pre-grasp generation, which starts at the root and
goes downwards. The final pre-grasp pool is shown in Fig. 13,
where pre-grasps for each part in the decomposition tree are
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Fig. 13 The final pool of pre-grasps for the six example models
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Fig. 14 a, b Contact friction cones with approximated eight sides, c,
d Convex hull for contact force and torque components, respectively

assembled to form the final pool. In case of a small object
(e.g., toy-car as shown in Fig. 11), no object decomposition
is needed, and pre-grasp generation is applied directly on the
object.

In the example of the dog model, three types of grasps can
be applied as shown in Fig. 12, but only the spherical type of
grasp has been automatically selected by the grasp planner. It
is because of the three fingers involved in the spherical grasp
make more number of contacts with the object than the other
types of grasps and the more number of contacts make the
grasp more stable. Similarly, a three-fingertip grasp is chosen
over two-fingertip grasp for the pony, and a cylindrical grasp
is chosen over two-fingertip grasp for the mug.
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Fig. 15 Analysis of time per grasp for various objects with varying 3D
data points

4.2 Object slicing results

Fig. 8 shows an example of object slicing and the contact
computation between an object and a finger. All the data
points within the slice are projected on the finger plane and
then the contacts with the finger are computed. Fig. 14 shows
the friction cones and wrench space for force and torque com-
ponents, respectively. All the generated grasps for each object
are tested using the grasp quality measure as discussed in
Sect. 3.7. Quantitative results of the proposed object slicing-
based grasp planner for point clouds as well as mesh models
are given in Table 1 (Here, only results for the three-finger
hand is given). The set of found grasps (N f) is the number of
grasps found from the pool of pre-grasps having good grasp
quality.

The time per grasp (¢) is the average computation time (in
seconds) to get a good grasp, which is the ratio of the total
run time (7') to the total number of good grasps (N f). Anal-
ysis has been carried out to study the effect of the number
of 3D data points on the computation time of the proposed
grasp planner. It is expected that the graph to be monotoni-
cally increasing with logarithmic complexity for the use of
Octree data structure. But the increasing of the data points
has a positive effect on the contacts point finding, where some
contact points may have been missed due to insufficient data
points. Nevertheless, it is found that increasing the number
of data points has little effect on the time per grasp (t) as
shown in Fig. 15 for various objects. The computation time
rises around 2 to 3 times for the range of 2500-14,000 data
points.
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Table 1 Results of the proposed object slicing-based planner (The three-finger hand)

Type of data Objects  Pre- grasps pool  Found grasps Pre-Grasps Total slicing Total time Time per
representation size (Ny) Generation time  stage time T=T,+T; grasp
(N) (Ty) (T5) t=T/Nys
Mesh models Bottle 192 125 0.0700 s 6.4285 s 6.4985 s 0.0520 s
Horse 76 19 0.0981 s 2.2217s 2.3198 s 0.1221s
Phone 122 34 0.1258 s 3.4287 s 3.5545s 0.1045 s
Point clouds Dog 168 73 0.1523 s 6.0038 s 6.1561 s 0.0843 s
Pony 79 8 0.0820 s 2.2675s 2.3495s 0.2937 s
Mug 64 22 0.0389 s 1.6460 s 1.6849 s 0.0766 s
Car 80 10 0.0305 s 1.7369 s 1.7674 s 0.1767s
Cat 144 79 0.0573 s 5.2090s 5.2663 s 0.0667 s

4.3 Contact computation results

All the object point clouds are noise free as a number of filter-
ing and smoothing operations had already been performed on
the raw scanned data at the time of building the KIT dataset.
So, to study the robustness of the proposed planner, Gaussian
noise has been added artificially to the object point clouds at
varying levels. The noise varies depending upon the sensing
devices, e.g., the laser-based Konica Minolta Vi-900 has an
accuracy of 50-170 pm, whereas infrared (IR)-based Kinect
has an accuracy of 1-1.5 mm at a distance of 0.6 m. Fig-
ure 16 shows the effect of different levels of noise on the grasp
quality of the proposed planner. The average grasp quality
changes between 1%- 5% for the noise level of 0.05-0.5 mm,
whereas 17-38% for the noise level of 1-2 mm. The final
results of the grasp planner at contact-level for various objects
using the three hands/grippers are shown in Fig. 17. The
threshold value of 0.3 mm is used for the point cloud-mesh
and mesh-mesh proximity query algorithms. The average
time per proximity query of the proposed method is 50-80 ms
for mesh-point cloud collision.

4.4 Experimental results

The planned grasps are further validated by executing the
grasps using a two-finger gripper mounted on an industrial
Motoman robot. The object point cloud is captured using two
Intel-Realsense depth cameras placed 180 degrees apart and
pointing toward the object as shown in Fig. 18. The under-
lying point cloud data acquisition is out of the scope of this
paper, but a brief description is given for better understand-
ing. Firstly, the object is segmented out by removing the
background from the raw point clouds taken from the depth
cameras. Then, both the point clouds are transformed into the
robot base frame and simply merged to form a single point
cloud, which constitutes the visible parts of the object sur-
face. A hole filling technique is used to fill the holes, mostly,
at the joining areas of the two point clouds. The point cloud

captured in such a way missed the bottom side as the object
is resting on the supporting plane (the tabletop). On the other
hand, information about the bottom surface of the objects
is not needed or redundant for grasp planning as the table
surface also prevents the gripper to reach there. Further, the
tabletop is included as a constraint at the time of computing
pre-grasp pool considerably reducing the pool size compared
to the one with no such constraints as shown in Fig. 13.

Further, the face-mask encoding scheme has been
extended to handle the situation, where a neighboring object
blocks the path of the gripper approaching the graspable
object. This is done by including the neighboring objects
along with the graspable object parts for checking reacha-
bility at the time of face-mask encoding. Figure 19 shows
two instances of grasping operation, with and without the
presence of neighboring objects.

Finally, the examples of successful stable grasps on a few
real objects during a simple pick and place operation are
shown in Fig. 20. It is to be noted that the finger joint dis-
placements computed using the method given in Sect. 3.8,
only, ensure the fingers making contacts with the object. The
fingers not only reach the object but also need to apply appro-
priate gripping force for holding the object. So, an impedance
controller is implemented on the gripper to generate gripping
force as well as control joint displacements, simultaneously.

4.5 Comparative evaluation
with the state-of-the-art

In this sub-section, a comprehensive comparison with the
existing state-of-the-art including recent work has been pre-
sented. Three grasp planners [9, 11] and [12] have been found
to be most relevant and chosen for evaluating the proposed
grasp planner quantitatively and qualitatively. The computa-
tion time and the grasp quality measure described in Sect. 3.7
are the two main criteria for the quantitative and qualitative
comparisons. For a platform-independent fair evaluation, all
the grasp planners have been implemented with the author’s

@ Springer



Intelligent Service Robotics

Fig. 16 Effect of different level

of noise on the proposed planner
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best understanding, and the same grasp quality measure met-
ric as discussed in Sect. 3.7 has been used. Three-dimensional
Octrees have been used for implementing ray tracing in the
grasp planners [11, 12] to speed up the spatial search. The
Proximity Query Package (PQP) library [32] is used for dis-
tance queries between two mesh models, which is required
for implementing the grasp planners [9, 11]. The implemen-
tation results for all the planners presented in this paper are
at par with the results given in the respective papers.

The grasp planner presented by Li et al. [12] is the most
recent and relevant work found in the literature. The plan-
ner has several advantages over its predecessor planners.
Although multiple cords (which is computationally more
expensive) have been used in the method proposed by Li
et al., here for simplicity, only a single cord has been used

@ Springer

Fig. 18 The experimental setup for performing simple pick and place
operation using a gripper mounted on the Motoman robot
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Fig. 19 The computation of the best grasp and its execution on a real
robot platform with and without the presence of neighboring objects

Fig. 20 Examples of gripper successfully performing stable grasping
on a few real objects

and the computation time per grasp for the various object is
given in Table 2. On comparing the time per grasp, it is found
that the proposed method is nearly 5-35 times faster depend-
ing upon the types of grasps. Unlike the work presented by
Li et al., which is based on ray tracing, the proposed planner
works successfully even on objects with small holes on the
surface as it does not need facet information. Further, a single
cord around the region is not enough to capture whether the
region is good for grasping. To overcome this, Li et al. had
used multiple cords which, however, give rise to an increase
in computation time. But in the method that is presented in
this paper, the entire contact region is explored to find possi-
ble contacts by projecting on the finger plane in a single step,

which is computationally more efficient. Another advantage
offered by the proposed planner is that it does not depend on
the underlying representation of the object model. It works
on both polygon mesh models and point clouds taken using a
depth sensor without any expensive processing such as sur-
face reconstruction. This makes the proposed planner robust
as it can handle different object representations e.g., polyg-
onal mesh, unstructured point clouds, etc.

The power grasp (i.e., enveloping grasp) planner [11]
based on object surface matching is the second grasp plan-
ner. The grasp planner is best suited for primitive volumes
like cylinders, boxes and cones. The planner uses ray tracing
for sampling the object surface and can only be applied on
the polygonal mesh model. The computation time is much
higher than the proposed grasp planner.

The third grasp planner is the primitive shapes-based plan-
ner proposed by Miller et al. [9]. The planner has shown
promising results and has been widely used by the grasp
planning research community. The main shortcomings of the
planner are as follows. The objects were manually approx-
imated into primitive shapes for the pre-grasps generation.
Although, they had automated the pre-grasps generation in
[24] by using a decomposition tree based on super-quadrics
approximation of the object parts, the computation time
for the planner is much higher than the proposed planner.
Besides, it did not mention any procedure to handle occlu-
sion by the neighboring parts. Unlike the proposed planner,
it cannot be applied directly on the point cloud data and can
only be applied after converting the point cloud to a mesh
model by using expensive surface reconstruction.

On comparing with the state-of-the-art in grasp planning,
the results are summarized as follows.

i. Unlike the previous work [9—15] and [26], the proposed
planner works on both point clouds taken using depth
sensors and objects represented as polygonal mesh,
which eliminates the need for expensive processing like
surface reconstruction for converting point clouds to
mesh models.

ii. The generation of pre-grasps has been automated by
using object decomposition and employing part-based
grasping, whereas in [9], it was done manually. The use
of PCA gives natural-looking hand alignment with the
object. Additionally, a face-mask scheme for encoding
the blocked faces and associated rules have been intro-
duced to prune the pre-grasps, which noticeably reduce
infeasible grasps at the pre-grasp generation stage.

iii. The proposed planner does not use ray tracing as in [11,
12] for mesh models, so it works successfully even on
objects with small holes, bumps etc., on the surface. As
the planner uses data points on the surface instead of
polygonal faces, it can handle non-manifold meshes.
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Table 2 Comparison of time per

grasp of the proposed planner Objects  Object slicing-based Cord Wrapping—bas.ed Surfac.e Sh'ap.e.
with the existing grasp planners grasp planner grasp planner by Li matching-based primitives-based
etal. [12] grasp planner by Roa  Grasp planner by
etal. [11] Miller et al. [9]
Bottle 0.0520's 0.6769 s 14.6798 s 04.8749 s
Horse 0.1221s 2.2953 s 17.5332's 11.7704 s
Phone 0.1045 s 1.3806 s 244810 s 13.6206 s
Dog 0.0843 s 2.9229 s 15.0040 s 06.6544 s
Pony 0.2937 s 1.9018 s 11.9557 s 05.2607 s
Mug 0.0766 s 1.9485 s 19.1141 s 13.3994 s
Car 0.1767s 0.9571s 12.3070 s 03.6456 s
Cat 0.0667 s 1.4759 s 09.3642 s 06.0654 s
Table 3 Comparison of the - - — -
average quality of top five Objects  Object slicing-based Cord wrappmg—bas.ed Surfac.e Sh.ap.e.
grasps from the grasp pool of grasp planner grasp planner by Li matching-based primitives-based
the proposed planner with the etal. [12] grasp planner by Roa Gr.asp planner by
existing grasp planners etal. [11] Miller et al. [9]
Bottle 0.8041 0.5280 0.6526 0.7390
Horse 0.8485 0.4045 0.6189 0.6362
Phone 0.6687 0.6346 0.6928 0.6510
Dog 0.8529 0.5698 0.7516 0.7241
Pony 0.7793 0.7340 0.4809 0.7688
Mug 0.7655 0.5084 0.6304 0.7162
Car 0.5223 0.7032 0.6588 0.7972
Cat 0.8364 0.6655 0.6529 0.7713

iv. The proposed grasp planner is computationally less
expensive than the previous grasp planners [9-14] and
[26], which makes the planner suitable for online grasp
planning. Further, increasing the number of data points
has little effect on the computation time.

v. The grasp quality of the proposed grasp planer is com-
parable with the previous grasp planners. A significant
increase in the quality can be seen in Table 3 for most of
the objects, while the rest are comparable if not better
than the other grasp planners.

4.6 Limitations

The proposed planner assumes that complete geometric
information about the objects is available i.e., the point cloud
of the whole surface or complete mesh model of the object.
So, it will not work on the point cloud taken using a depth
sensor from a single view, which gives only partial infor-
mation about the object. A number of methods are available
in the literature [38] to reconstruct the complete geometry
from the partial object information, which can be used as a
pre-processing stage to the proposed gasp planner.

@ Springer

Another limitation of the proposed method is that it fails
on objects having sparse data points especially, for the coarse
mesh model. The data points on the surface of such objects
are up-sampled to increase the number.

The current implementation of the fit and split algorithm
based on MVBB [29] fails to decompose objects having sym-
metric parts. For example, the decomposition results of the
horse model as shown in Fig. 11, where the legs and the
main body part are symmetric about all the three axes of the
bounding box and the algorithm fails to divide further into
legs and body parts. The effect of this limitation on the grasp
planner is that some good grasps might be missed.

5 Conclusions

In this paper, the problem of finding grasp plans based on
a novel object slicing-based method has been developed
and implemented on three-different grippers/hands. Object
part-based grasping has been implemented for arbitrary 3D
objects. The object decomposition and the generation of
pre-grasps for each part have been automated by a fit and
split algorithm based on Minimum Volume Bounding Box
(MVBB) and PCA-based object shape categorisation. The
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average computation time per grasp has been found to remain
nearly the same for all the objects. Moreover, the computa-
tion time rises by only around 2 to 3 times for the objects
having data points within the range of 2500-14,000. Further,
a comprehensive comparison with the existing state-of-the-
art including recent work has been presented. The proposed
planner has been found to be computationally less expensive
than the previous grasp planners, which makes the planner
suitable for online grasp planning. The planner has been
tested on common household objects using a two-finger
gripper mounted on an industrial Motoman robot. Further,
finding the best feasible grasps has been demonstrated by
handling scenarios such as avoiding the tabletop and sur-
rounding objects.

In future, itis planned to address the limitations and extend
the work for partial point clouds taken using depth sen-
sors from a single view. The stability of the grasps can be
improved by considering the local surface patch for qual-
ity measurement at the contacts instead of the point contact
friction model.
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