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ABSTRACT 
Assembly sequence planning deals with finding the sequence of operations to assemble the 
components and sub-assemblies into the final product. With advent of Artificial 
Intelligence, several soft-computing based evolutionary optimisation algorithms had been 
used by researchers to solve the problem of finding the best feasible assembly sequence. In 
the proposed paper, an Ant Colony Optimisation (ACO) algorithm based approach has been 
used for assembly sequence optimisation based on minimizing the number of direction 
changes, while conforming to the precedence constraints between components. Because of 
the graph-based nature of ACO, it is relatively less computationally expensive than many of 
the other soft computing based approaches reported in the literature, and moreover it is also 
well suited to the nature of the problem on hand. However, the ACO algorithm has a lot of 
parameters such as rate of pheromone evaporation, pheromone decay parameter, number of 
iterations, etc. each of which needs to be varied in order to obtain the best convergence rate 
of the algorithm, Furthermore, the combination of the parameters also needs to be 
optimised. In the present paper, a binary coded Genetic Algorithm (GA) has been proposed to 
optimise the parameters of the ACO algorithm. Some of the reasons for choosing GA include 
the fact that the number of parameters in GA is less than ACO and thus it takes less time and 
efforts to optimise the GA than ACO. Moreover the modeling of the solutions (i.e. 
chromosomes) in the form of binary strings is easier. The optimized ACO parameters have 
been used for solving a problem of assembly sequence optimization for a sixteen component 
assembly to demonstrate the effectiveness of our proposed meta-optimization procedure. 

Keywords: Computer-Aided Process Planning, Assembly Sequence Optimization, Ant Colony 
Optimisation, Meta-optimisation by Genetic Algorithm. 

1 INTRODUCTION 

Assembly sequence planning deals with finding the sequence of operations to assemble the 
components into final product. Since assembly costs contribute to a significant amount of 
total manufacturing cost, proper assembly sequence planning plays a crucial role in reducing 
cost. Significant expertise and knowledge are necessary to determine the optimal assembly 
sequence. Moreover, with increase in number of components, the number of feasible 
assembly sequences possible also increases, making manual process planning laborious and 
time consuming. To overcome these drawbacks, various Computer-Aided Process Planning 
approaches have been developed. With advent of Artificial Intelligence, several soft-
computing based evolutionary optimization algorithms had been used for assembly sequence 
optimization, based on criteria like changes in orientation, assembly tools, and stability. They 
possess number of parameters and their values can have significant impact on the 
effectiveness of an algorithm. Moreover, the parameter values need to be tuned for each new 
problem instance. Naturally a key challenge is determining the optimum combination of 
parameters (known as meta-optimization), which if done manually, may involve lot of time 
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and effort. In the present paper, an ACO algorithm has been used for assembly sequence 
optimization based on number of orientation changes, while conforming to the part 
precedence constraints. Because of graph-based nature, it is less computationally expensive 
than other soft computing approaches, and moreover it is also well suited to the nature of the 
problem on hand. However, ACO has a lot of parameters such as Q value to adjust the 
increment of pheromone, rate of pheromone evaporation, pheromone decay parameter, 
number of iterations required for convergence. Each of these needs to be varied to obtain the 
best algorithm performance. Furthermore, the parameter combination also needs to be 
optimized. In the present paper, a binary coded GA has been proposed to optimise the ACO 
parameters. Reasons for choosing GA include the fact that the number of GA parameters is 
less than ACO and modeling of the solutions in form of binary strings is easier.  

A brief review of different approaches for assembly sequence optimization is given below. 
Hong and Cho [1] developed an approach for robotic assembly sequence optimization by 
Hopfield neural network and an expert system to infer the assembly constraints from the 
liaison data of the product. Bonneville et al. [2] developed a GA based approach. The authors 
reported that the proposed GA could generate all valid and good assembly plans but its 
performance was slow, and does not necessarily guarantee optimum plans. Chen et al. [3] 
proposed a three-stage integrated approach with heuristic working rules to assist the planner 
to develop a better assembly plan. Above Graph and transforming rules were used to create a 
correct Explosion Graph of the assembly models, followed by a three-level relational model to 
create a complete relational model graph and an incidence matrix, a mathematical model 
based on a penalty index was formulated, and a revised minimum spanning table method was 
used to generate and evaluate a feasible assembly sequence. Wang et al. [4] developed an 
ACO approach for optimisation of assembly sequences. The optimal solution was with respect 
to the least reorientations during assembly. The concept of assembly by disassembly was 
adopted in that paper and disassembly matrix was used to guarantee the validity and 
feasibility of sequences. The parameters of this ACO were chosen after trial computations. 
Cao and Xiao [5] explored Immune Optimisation Algorithm (IOA). It was based on the bionic 
principles of Artificial Immune Systems (AIS). Assembly sequences were evaluated on the basis 
of total number of components, number of changes in assembly directions and tools, base 
component location, and feasibility degree. Chang et al. [6] showed the application of AIS for 
assembly sequence planning exploration using connector concepts. Combination property, 
tool property, direction property, precedence relationships were considered. Wang and Liu 
[7] developed a PSO based approach. Assembly cost was subjected to geometrical constraints 
and five assembly process constraints namely, local assembly precedence, number of the 
unstable parts, assembly direction and tool changes, connector changes. Lv and Lu [8] 
presented the application of discrete PSO. They considered total number of tool changes, 
orientation changes, and operation type changes and interference times in the product 
assembly. Gao et al. [9] developed an approach based on Memetic Algorithm where a 
chromosome represented an assembly sequence consisting of genes containing the part 
number and the direction variable. They considered times of the assembly direction changes 
and assembly feasibility. Zhou et al. [10] combined the Bacterial Chemotaxis with GA. 
Assembly sequences were encoded as chromosomes, where gene in the chromosome is 
treated as a bacterium. Fitness function comprised of length of longest sub-sequence, number 
of orientation changes, number of gripper changes. Xing and Wang [11] presented a hybrid 
PSO and GA based optimisation for compliant assemblies based on graph theory. Liaison graph 
and adjacency matrix were used to describe the geometry of the compliant assemblies. 
Assembly sequences were evaluated on the basis of assembly variation due to dimensional 
tolerance. Recently, Li et al. [12] developed an algorithm based on Improved Harmony Search 



(IHS). They have proposed new aspects like an initial harmony memory (HM) established using 
the opposition based learning (OBL) strategy, a way to improvise a new harmony and a local 
search strategy. They considered changes of assembly direction and assembly tool and 
stability criteria in the fitness function. 

In the following sections, first the approach of assembly sequence optimisation by using ACO 
is described, followed by the proposed approach for parameter meta-optimization of ACO by 
GA. An illustrative example is given to demonstrate the application and the results and 
discussions are presented. Finally important conclusions and scope for future work are given. 

2 APPROACH FOR ASSEMBLY SEQUENCE OPTIMIZATION BY USING ACO 

The ACO approach developed by Wang et al. [4] has been applied to determine the best 
feasible assembly sequence with least number of direction changes. The concept of assembly 
by disassembly has been adopted, where a disassembly sequence has been represented as an 
ordered list of disassembly operations (DO). Each DO is denoted as a duple DO = (N, D), where 
N is the component number and D is its disassembly direction i.e. either of ±X/±Y/±Z. The 
feasibility of an assembly sequence is ensured using a Disassembly Matrix (DM). The number of 
rows of DM is equal to number of parts n. The number of columns of DM is equal to 3n, where 
each column of corresponding component refers to one of the disassembly directions, 
+X/+Y/+Z. If the component ci does not pose interference with the component cj in the 
direction of +X, then DM (i, j) value of +X column will be equal to 0, otherwise 1. Conversely, 
if the component ci does not pose interference with the component cj in the direction of –X, 
then DM (j, i) value of +X column will be equal to 0, otherwise 1. A typical Disassembly Matrix 
(DM) has been presented in Table 1 for a four component assembly, shown in Figure 1 (Wang 
et al. [4]).  

 

Figure 1: Four component assembly 

Table 1: Disassembly Matrix for Four component assembly 

 

Directions X Y Z X Y Z X Y Z X Y Z 
1 0 0 0 1 1 0 1 1 0 1 1 0 
2 1 1 1 0 0 0 0 0 0 0 0 0 
3 1 1 1 0 0 1 0 0 0 0 0 0 
4 1 1 1 0 0 1 0 0 1 0 0 0 

The problem of assembly sequence optimization has been modeled using a graph, with each 
node representing a component number and its disassembly direction. In ACO, first of all, 
using the DM it is necessary to identify those components which can be used to start the 
disassembly operation. The number of these components decides the number of ants for the 
ACO algorithm. These ants are placed on the starting nodes and from the START node, the 
ants start moving towards the END node, gradually connecting the intermediate nodes. The 
next node of the graph is selected by the ants using a probability function given in eq. 1. The 
probability with which ant k in DO i chooses DO j is calculated as follows. 

                                 pk (i, j) = �
𝜏(𝑖,𝑗)[𝜂(𝑖,𝑗)𝛽]

∑ 𝜏(𝑖,𝑗)[𝜂(𝑖,𝑗)𝛽]𝑢∈𝐶𝑘  
, 𝑖𝑓 𝑗 ∈ 𝐶𝑘(𝑖) 

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   
                   (1) 

The ants release some pheromone while traversing the path; this information is passed onto 
subsequent generations using a matrix, namely Pheromone Matrix (PhM). During the course of 
algorithm, this PhM is updated using global and local updating rule. Gradually, the pheromone 



on the paths that are less traversed by ants is evaporated because of more distance, and the 
pheromone on the more traversed paths concentrates since they are traversed by more 
number of ants due to shorter distance. This is how the shortest path is selected, which refers 
to the feasible and optimal solution. The ACO algorithm has number of parameters such as Q, 
ρ (rate of pheromone evaporation), and gamma (pheromone decay parameter), and the 
number of iterations required for convergence. The values of the above parameters need to 
be varied in order to obtain the best performance of the algorithm, and furthermore, the 
combination of the parameters also needs to be optimized, which if done manually, may 
involve lot of time and efforts. Keeping the above in mind, a binary coded GA has been 
proposed here to optimize ACO parameters, details of which are given in section 2.1. 

3 PROPOSED APPROACH FOR PARAMETER META-OPTIMIZATION OF ACO BY GA 

The GA consists of three steps: 1) Selection, 2) Crossover, and 3) Mutation. The first is to 
encode the solutions in the form of chromosomes. In the present paper, the binary coded GA 
has been proposed. A typical chromosome of GA is [0 1 0 1 0 0 0 0 1]. The length of each 
chromosome is the summation of length of each parameter when converted into binary string. 
The initial population for GA is generated randomly. A typical population of chromosomes of 
population size “3” is as follows: [0 1 0 1 0 0 1 1 0; 1 0 1 0 0 1 0 1 0; 0 1 1 1 0 0 0 1 0]. 
The selection operator is used to choose the good quality chromosomes. In the present work, 
Tournament Selection has been applied to generate the mating pool. It provides selection 
pressure by holding a tournament among “s” competitors, i.e. tournament size. The winner of 
the tournament is the individual with the highest fitness. The winner is then inserted into the 
mating pool. The mating pool, being comprised of tournament winners, has a higher average 
fitness than the average population fitness. Increased selection pressure can be provided by 
simply increasing the tournament size “s”, as the winner from a larger tournament will, on 
average, have a higher fitness than the winner of a smaller tournament (Miller and Goldberg 
[13]). After making the mating pool, the population individual undergoes the crossover 
operation, based on a probability, known as crossover probability. A simple 2-point crossover 
has been used to generate the offsprings possessing the mix quality of their parents. Then, 
based on the mutation probability, the population of GA undergoes the mutation. A simple 
swap mutation operator has been used. After this process, the offsprings are evaluated again 
by converting the binary chromosomes into the real parameter values, followed by running 
the ACO algorithm ten times. The fitnesses of offsprings are compared with their parents, 
which if improved, are retained and carried over to next generation, otherwise they are 
discarded. The GA cycle is repeated number of times, until the prespecified number of 
iterations of GA is completed. For the conversion of binary values of GA to real values of ACO 
parameters, the entire binary string of GA chromosome is divided into substrings, where each 
substring represents different ACO parameters namely, Q (a constant number used to adjust 
the increment of pheromone), ρ (rate of pheromone evaporation), gamma (pheromone decay 
parameter) and the number of iterations required for convergence.  Wang et al. [4] suggests 
that the Q should be a discrete number and the value of ρ and gamma should lie between 0 
and 1. The binary substring is then converted by using the formulae given in eq. 2 to its 
decimal equivalent which represents the actual parameter value of the ACO algorithm. 
actual number of iteratons for ACO =
 round (minimum number of iteratons + (maximum number of iteratons−minimum number of iteratons)

�2𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔 𝑓𝑜𝑟 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓iteratons−1�
) (2) 

Likewise, the actual value of Q, ρ, and gamma can also be determined. These values are then 
used as parameters of the ACO algorithm. The following fitness function of GA has been taken 



into account considering the average fitness provided by all the ants in the last iteration. The 
fitness function, FF can be thus given as follows: 

𝐹𝐹 = 𝑚𝑒𝑎𝑛 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑢𝑛𝑠 𝑜𝑓 𝐴𝐶𝑂 

The flow chart of the GA based parameter meta-optimization of ACO algorithm is given in 
Figure 2. 

4 RESULTS AND DISCUSSIONS 

An example of a punching machine assembly consisting of 16 components as shown in Figure 
3, has been considered here to demonstrate the application of the proposed approach for 
parameter meta-optimization of ACO algorithm. Figure 4 presents an extract of the 
disassembly matrix, which is a 16 x 48 matrix for the given 16 component assembly. Here, the 
GA is used to determine the best parameter combination for ACO algorithm for solving the 
given assembly sequence optimization problem. The main parameters which affect the 
performance of GA are population size, crossover and mutation probability. A sensitivity 
analysis of the three GA parameters was performed to determine the influence of these 
parameters on the optimal solution given by GA. The following ranges of variation of different 
ACO algorithm parameters have been assumed: Q value is varied between 1 and 8, ρ value is 
varied between 0.1 and 0.8, gamma value is varied between 0.1 and 0.8 and the number of 
iterations is varied between 50 and 190. To study the influence of GA crossover probability, it 
was varied from 0.5 to 0.95 in steps of 0.05 keeping the mutation probability fixed at 0.1 and 
population size fixed at 5. Each binary chromosome of GA yields a particular combination of 
real parameters of the ACO algorithm. Using this parameter combination, the ACO algorithm 
has been run ten times to evaluate the fitness each GA chromosome, and then their average 
fitness value over these ten runs has been calculated. This average indicates the actual 
performance of the ACO algorithm for a certain parameter combination. Each GA simulation is 
carried out for 50 iterations. Figure 5 shows the variation of fitness value of GA with the 
crossover probability. It is observed that a crossover probability of 0.7 gives the optimal 
fitness value. Next, to study the influence of mutation probability, it was varied from 0.05 to 
0.15 in steps of 0.025 keeping the crossover probability fixed at 0.7 and population size fixed 
at 5. Figure 6 shows the variation of fitness value with the mutation probability. It is observed 
that an optimal fitness value is obtained for mutation probability of 0.1. We further increased 
the population size of GA from 5 to 10. However, there was no improvement of the optimal 
solution given by GA. Therefore from the above results, it may be concluded that the 
optimum GA parameters are crossover probability of 0.7 and mutation probability of 0.1, 
when we use a GA population size of 5 and the corresponding optimum parameters of the ACO 
algorithm are as follows: Q = 7, ρ = 0.1, gamma = 0.2, number of iterations = 170. Figure 7 
shows the convergence plot of the GA when it was run with the above set of optimal 
parameters. Figure 8 shows the convergence plot of the ACO algorithm for the given assembly 
sequence optimization problem when the ACO algorithm was run with the above set of 
optimal parameters recommended by the proposed GA based meta-optimization approach. 
The optimal disassembly sequences along with their directions given by the meta-optimized 
ACO algorithm are as follows. [(12, -Y) (11, -Y) (14, Y) (13, Y) (2, -X) (9, Z) (15, Z) (8, Z) (7, Z) 
(5, Z) (6, Z) (10, Z) (16, Z) (4, Z) (3, Z) (1, Z)] and [(13, Y) (14, Y) (12, -Y) (11, -Y) (2, -X) (9, 
Z) (6, Z) (7, Z) (5, Z) (8, Z) (10, Z) (16, Z) (15, Z) (3, Z) (4, Z) (1, Z)]. Each of these sequences 
requires three direction changes. 



  

Figure 2: Flowchart of the proposed Meta-optimization algorithm 
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Figure 3: Punching Machine assembly 

Part 
no.  
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16   

Figure 4: An extract of the Disassembly 
Matrix for the Punching Machine assembly 

 
Figure 5: Variation of fitness value of GA 
with the crossover probability 

Figure 6: Variation of fitness value of GA 
with the mutation probability 

Figure 7: Convergence plot of GA used for 
meta-optimization of ACO  

Figure 8: Convergence plot of ACO for 
assembly sequence optimization 

The corresponding assembly sequences can be obtained by reversing the disassembly 
sequences, which are as follows. [(1,-Z) (3, -Z) (4, -Z) (16, -Z) (10, -Z) (6, -Z) (5, -Z) (7, -Z) 
(8, -Z) (15, -Z) (9, -Z) (2, X) (13, -Y) (14, -Y) (11, Y) (12, Y)] and [(1, -Z) (4, -Z) (3, -Z) (15, -Z) 
(16, -Z) (10, -Z) (8, -Z) (5, -Z) (7, -Z) (6, -Z) (9, -Z) (2, X) (11, Y) (12, Y) (14, -Y) (13, -Y)]. It 
should be noted that the directions of the components would have to be reversed. The above 
assembly sequences are found to be feasible as they are in accordance with the precedence 
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constraints. The global best fitness found at the end of all iterations of ACO is 3 i.e. the 
minimum number of direction changes required by optimal assembly sequence is 3. The 
average fitness value of all ants at the end of all iterations of ACO was found to be 3.9911. 

5 CONCLUSIONS 

In the present paper, an ACO algorithm based approach has been used for assembly sequence 
optimisation based on minimizing the number of direction changes, while conforming to the 
precedence constraints between components. Further, a binary coded GA has been proposed 
for meta-optimization of ACO in order to optimize the different ACO parameters such as rate 
of pheromone evaporation, pheromone decay parameter, number of iterations, etc. Some of 
the reasons for choosing GA include the fact that the number of parameters in GA is less than 
ACO and thus it takes less time and efforts to optimise the GA than the ACO. Moreover the 
modeling of the solutions (i.e. chromosomes) in the form of binary strings is easier. The 
optimized ACO parameters have been used for solving a problem of assembly sequence 
optimization for a sixteen component assembly to demonstrate the effectiveness of our 
proposed meta-optimization procedure. The future scope of work will include considering 
some other criteria for optimization such as stability, minimizing assembly tool changes to 
reduce handling time, etc. 

REFERENCES 

[1] Hong, D S. Cho, H S. 1993. Optimization of robotic assembly sequences using neural 
network, IEEE/RSJ Int Conf on Intelligent Robots and Systems, Japan, July 26-30, pp. 232-239. 
[2] Bonneville, F. Perrard, C. Henrioud, J M. 1995. A genetic algorithm to generate and 
evaluate assembly plans, INRIA/IEEE Symposium on Emerging Technologies & Factory 
Automation, France, October 10-13, pp 231-239.  
[3] Chen, R S. Lu, K Y. Tai, P H. 2004. Optimizing assembly planning through a three-stage 
integrated approach, International Journal of Production Economics, 88, pp 243–256. 
[4] Wang, J F. Liu, J H. Zhong, Y F. 2005. A novel ant colony algorithm for assembly sequence 
planning, International Journal of Advanced Manufacturing Technology, 25, pp 1137–1143. 
[5] Cao, P B. Xiao, R B. 2007. Assembly planning using a novel immune approach. Int J Adv 
Manuf Technol, 31(7), pp 770–782. 
[6] Chang, CC. Tseng, HE. Meng, LP. 2009.  Artificial immune systems for assembly sequence 
planning exploration, Engineering Applications of Artificial Intelligence, 22, pp 1218–1232. 
[7] Wang, Y. Liu, JH. 2010. Chaotic particle swarm optimization for assembly sequence 
planning. Robot Computer Integrated Manufacturing, 26(2), pp 212–222. 
[8] Lv, HG. Lu, C. 2010. An assembly sequence planning approach with a discrete particle 
swarm optimization algorithm, Int J Adv Manuf Technol 50(5–8), pp 761–770. 
 [9] Gao, L. Qian, W R. Li, X Y. Wang, J F. 2010. Application of memetic algorithm in assembly 
sequence planning, Int J Adv Manuf Technol 49(9–12), pp 1175–1184. 
[10] Zhou, W. Zheng, J R. Yan, J J. Wang, J F. 2011. A novel hybrid algorithm for assembly 
sequence planning combining bacterial chemotaxis with genetic algorithm, Int J Adv Manuf 
Technol, 52(5–8), pp 715–724. 
[11] Xing, Y F. Wang, Y S. 2012. Assembly sequence planning based on a hybrid particle swarm 
optimisation and genetic algorithm, Int Journal of Prod Research, 50(24), pp 7303–7312. 
[12] Li, X. Qin, K. Zeng, B. Gao, L. Su, J. 2016. Assembly sequence planning based on an 
improved harmony search algorithm, Int J Adv Manuf Technol, 84, pp 2367-2380. 
[13] Miller, B L. Goldberg, D E. 1995. Genetic Algorithms, Tournament Selection, and the 
Effects of Noise, Complex Systems, 9, pp 193- 212. 
 


