
A GA based parameter meta-optimization of ACO algorithm for solving assembly
sequence optimization

Atul Mishra1 and Sankha Deb2
FMS and Computer Integrated Manufacturing Laboratory,

Department of Mechanical Engineering,
Indian Institute of Technology Kharagpur, Kharagpur -721302, India.

1 atulmishra_chdi@yahoo.in
2 sankha.deb@mech.iitkgp.ernet.in

ABSTRACT
Assembly sequence planning deals with finding the sequence of operations to assemble the
components and sub-assemblies into the final product. With advent of Artificial
Intelligence, several soft-computing based evolutionary optimisation algorithms had been
used by researchers to solve the problem of finding the best feasible assembly sequence. In
the proposed paper, an Ant Colony Optimisation (ACO) algorithm based approach has been
used for assembly sequence optimisation based on minimizing the number of direction
changes, while conforming to the precedence constraints between components. Because of
the graph-based nature of ACO, it is relatively less computationally expensive than many of
the other soft computing based approaches reported in the literature, and moreover it is also
well suited to the nature of the problem on hand. However, the ACO algorithm has a lot of
parameters such as rate of pheromone evaporation, pheromone decay parameter, number of
iterations, etc. each of which needs to be varied in order to obtain the best convergence rate
of the algorithm, Furthermore, the combination of the parameters also needs to be
optimised. In the present paper, a binary coded Genetic Algorithm (GA) has been proposed to
optimise the parameters of the ACO algorithm. Some of the reasons for choosing GA include
the fact that the number of parameters in GA is less than ACO and thus it takes less time and
efforts to optimise the GA than ACO. Moreover the modeling of the solutions (i.e.
chromosomes) in the form of binary strings is easier. The optimized ACO parameters have
been used for solving a problem of assembly sequence optimization for a sixteen component
assembly to demonstrate the effectiveness of our proposed meta-optimization procedure.

Keywords: Computer-Aided Process Planning, Assembly Sequence Optimization, Ant Colony
Optimisation, Meta-optimisation by Genetic Algorithm.

1 INTRODUCTION

Assembly sequence planning deals with finding the sequence of operations to assemble the
components into final product. Since assembly costs contribute to a significant amount of
total manufacturing cost, proper assembly sequence planning plays a crucial role in reducing
cost. Significant expertise and knowledge are necessary to determine the optimal assembly
sequence. Moreover, with increase in number of components, the number of feasible
assembly sequences possible also increases, making manual process planning laborious and
time consuming. To overcome these drawbacks, various Computer-Aided Process Planning
approaches have been developed. With advent of Artificial Intelligence, several soft-
computing based evolutionary optimization algorithms had been used for assembly sequence
optimization, based on criteria like changes in orientation, assembly tools, and stability. They
possess number of parameters and their values can have significant impact on the
effectiveness of an algorithm. Moreover, the parameter values need to be tuned for each new
problem instance. Naturally a key challenge is determining the optimum combination of
parameters (known as meta-optimization), which if done manually, may involve lot of time

mailto:atulmishra_chdi@yahoo.in

and effort. In the present paper, an ACO algorithm has been used for assembly sequence
optimization based on number of orientation changes, while conforming to the part
precedence constraints. Because of graph-based nature, it is less computationally expensive
than other soft computing approaches, and moreover it is also well suited to the nature of the
problem on hand. However, ACO has a lot of parameters such as Q value to adjust the
increment of pheromone, rate of pheromone evaporation, pheromone decay parameter,
number of iterations required for convergence. Each of these needs to be varied to obtain the
best algorithm performance. Furthermore, the parameter combination also needs to be
optimized. In the present paper, a binary coded GA has been proposed to optimise the ACO
parameters. Reasons for choosing GA include the fact that the number of GA parameters is
less than ACO and modeling of the solutions in form of binary strings is easier.

A brief review of different approaches for assembly sequence optimization is given below.
Hong and Cho [1] developed an approach for robotic assembly sequence optimization by
Hopfield neural network and an expert system to infer the assembly constraints from the
liaison data of the product. Bonneville et al. [2] developed a GA based approach. The authors
reported that the proposed GA could generate all valid and good assembly plans but its
performance was slow, and does not necessarily guarantee optimum plans. Chen et al. [3]
proposed a three-stage integrated approach with heuristic working rules to assist the planner
to develop a better assembly plan. Above Graph and transforming rules were used to create a
correct Explosion Graph of the assembly models, followed by a three-level relational model to
create a complete relational model graph and an incidence matrix, a mathematical model
based on a penalty index was formulated, and a revised minimum spanning table method was
used to generate and evaluate a feasible assembly sequence. Wang et al. [4] developed an
ACO approach for optimisation of assembly sequences. The optimal solution was with respect
to the least reorientations during assembly. The concept of assembly by disassembly was
adopted in that paper and disassembly matrix was used to guarantee the validity and
feasibility of sequences. The parameters of this ACO were chosen after trial computations.
Cao and Xiao [5] explored Immune Optimisation Algorithm (IOA). It was based on the bionic
principles of Artificial Immune Systems (AIS). Assembly sequences were evaluated on the basis
of total number of components, number of changes in assembly directions and tools, base
component location, and feasibility degree. Chang et al. [6] showed the application of AIS for
assembly sequence planning exploration using connector concepts. Combination property,
tool property, direction property, precedence relationships were considered. Wang and Liu
[7] developed a PSO based approach. Assembly cost was subjected to geometrical constraints
and five assembly process constraints namely, local assembly precedence, number of the
unstable parts, assembly direction and tool changes, connector changes. Lv and Lu [8]
presented the application of discrete PSO. They considered total number of tool changes,
orientation changes, and operation type changes and interference times in the product
assembly. Gao et al. [9] developed an approach based on Memetic Algorithm where a
chromosome represented an assembly sequence consisting of genes containing the part
number and the direction variable. They considered times of the assembly direction changes
and assembly feasibility. Zhou et al. [10] combined the Bacterial Chemotaxis with GA.
Assembly sequences were encoded as chromosomes, where gene in the chromosome is
treated as a bacterium. Fitness function comprised of length of longest sub-sequence, number
of orientation changes, number of gripper changes. Xing and Wang [11] presented a hybrid
PSO and GA based optimisation for compliant assemblies based on graph theory. Liaison graph
and adjacency matrix were used to describe the geometry of the compliant assemblies.
Assembly sequences were evaluated on the basis of assembly variation due to dimensional
tolerance. Recently, Li et al. [12] developed an algorithm based on Improved Harmony Search

(IHS). They have proposed new aspects like an initial harmony memory (HM) established using
the opposition based learning (OBL) strategy, a way to improvise a new harmony and a local
search strategy. They considered changes of assembly direction and assembly tool and
stability criteria in the fitness function.

In the following sections, first the approach of assembly sequence optimisation by using ACO
is described, followed by the proposed approach for parameter meta-optimization of ACO by
GA. An illustrative example is given to demonstrate the application and the results and
discussions are presented. Finally important conclusions and scope for future work are given.

2 APPROACH FOR ASSEMBLY SEQUENCE OPTIMIZATION BY USING ACO

The ACO approach developed by Wang et al. [4] has been applied to determine the best
feasible assembly sequence with least number of direction changes. The concept of assembly
by disassembly has been adopted, where a disassembly sequence has been represented as an
ordered list of disassembly operations (DO). Each DO is denoted as a duple DO = (N, D), where
N is the component number and D is its disassembly direction i.e. either of ±X/±Y/±Z. The
feasibility of an assembly sequence is ensured using a Disassembly Matrix (DM). The number of
rows of DM is equal to number of parts n. The number of columns of DM is equal to 3n, where
each column of corresponding component refers to one of the disassembly directions,
+X/+Y/+Z. If the component ci does not pose interference with the component cj in the
direction of +X, then DM (i, j) value of +X column will be equal to 0, otherwise 1. Conversely,
if the component ci does not pose interference with the component cj in the direction of –X,
then DM (j, i) value of +X column will be equal to 0, otherwise 1. A typical Disassembly Matrix
(DM) has been presented in Table 1 for a four component assembly, shown in Figure 1 (Wang
et al. [4]).

Figure 1: Four component assembly

Table 1: Disassembly Matrix for Four component assembly

Directions X Y Z X Y Z X Y Z X Y Z
1 0 0 0 1 1 0 1 1 0 1 1 0
2 1 1 1 0 0 0 0 0 0 0 0 0
3 1 1 1 0 0 1 0 0 0 0 0 0
4 1 1 1 0 0 1 0 0 1 0 0 0

The problem of assembly sequence optimization has been modeled using a graph, with each
node representing a component number and its disassembly direction. In ACO, first of all,
using the DM it is necessary to identify those components which can be used to start the
disassembly operation. The number of these components decides the number of ants for the
ACO algorithm. These ants are placed on the starting nodes and from the START node, the
ants start moving towards the END node, gradually connecting the intermediate nodes. The
next node of the graph is selected by the ants using a probability function given in eq. 1. The
probability with which ant k in DO i chooses DO j is calculated as follows.

 pk (i, j) = �
𝜏(𝑖,𝑗)[𝜂(𝑖,𝑗)𝛽]

∑ 𝜏(𝑖,𝑗)[𝜂(𝑖,𝑗)𝛽]𝑢∈𝐶𝑘
, 𝑖𝑓 𝑗 ∈ 𝐶𝑘(𝑖)

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1)

The ants release some pheromone while traversing the path; this information is passed onto
subsequent generations using a matrix, namely Pheromone Matrix (PhM). During the course of
algorithm, this PhM is updated using global and local updating rule. Gradually, the pheromone

on the paths that are less traversed by ants is evaporated because of more distance, and the
pheromone on the more traversed paths concentrates since they are traversed by more
number of ants due to shorter distance. This is how the shortest path is selected, which refers
to the feasible and optimal solution. The ACO algorithm has number of parameters such as Q,
ρ (rate of pheromone evaporation), and gamma (pheromone decay parameter), and the
number of iterations required for convergence. The values of the above parameters need to
be varied in order to obtain the best performance of the algorithm, and furthermore, the
combination of the parameters also needs to be optimized, which if done manually, may
involve lot of time and efforts. Keeping the above in mind, a binary coded GA has been
proposed here to optimize ACO parameters, details of which are given in section 2.1.

3 PROPOSED APPROACH FOR PARAMETER META-OPTIMIZATION OF ACO BY GA

The GA consists of three steps: 1) Selection, 2) Crossover, and 3) Mutation. The first is to
encode the solutions in the form of chromosomes. In the present paper, the binary coded GA
has been proposed. A typical chromosome of GA is [0 1 0 1 0 0 0 0 1]. The length of each
chromosome is the summation of length of each parameter when converted into binary string.
The initial population for GA is generated randomly. A typical population of chromosomes of
population size “3” is as follows: [0 1 0 1 0 0 1 1 0; 1 0 1 0 0 1 0 1 0; 0 1 1 1 0 0 0 1 0].
The selection operator is used to choose the good quality chromosomes. In the present work,
Tournament Selection has been applied to generate the mating pool. It provides selection
pressure by holding a tournament among “s” competitors, i.e. tournament size. The winner of
the tournament is the individual with the highest fitness. The winner is then inserted into the
mating pool. The mating pool, being comprised of tournament winners, has a higher average
fitness than the average population fitness. Increased selection pressure can be provided by
simply increasing the tournament size “s”, as the winner from a larger tournament will, on
average, have a higher fitness than the winner of a smaller tournament (Miller and Goldberg
[13]). After making the mating pool, the population individual undergoes the crossover
operation, based on a probability, known as crossover probability. A simple 2-point crossover
has been used to generate the offsprings possessing the mix quality of their parents. Then,
based on the mutation probability, the population of GA undergoes the mutation. A simple
swap mutation operator has been used. After this process, the offsprings are evaluated again
by converting the binary chromosomes into the real parameter values, followed by running
the ACO algorithm ten times. The fitnesses of offsprings are compared with their parents,
which if improved, are retained and carried over to next generation, otherwise they are
discarded. The GA cycle is repeated number of times, until the prespecified number of
iterations of GA is completed. For the conversion of binary values of GA to real values of ACO
parameters, the entire binary string of GA chromosome is divided into substrings, where each
substring represents different ACO parameters namely, Q (a constant number used to adjust
the increment of pheromone), ρ (rate of pheromone evaporation), gamma (pheromone decay
parameter) and the number of iterations required for convergence. Wang et al. [4] suggests
that the Q should be a discrete number and the value of ρ and gamma should lie between 0
and 1. The binary substring is then converted by using the formulae given in eq. 2 to its
decimal equivalent which represents the actual parameter value of the ACO algorithm.
actual number of iteratons for ACO =
 round (minimum number of iteratons + (maximum number of iteratons−minimum number of iteratons)

�2𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔 𝑓𝑜𝑟 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓iteratons−1�
) (2)

Likewise, the actual value of Q, ρ, and gamma can also be determined. These values are then
used as parameters of the ACO algorithm. The following fitness function of GA has been taken

into account considering the average fitness provided by all the ants in the last iteration. The
fitness function, FF can be thus given as follows:

𝐹𝐹 = 𝑚𝑒𝑎𝑛 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑢𝑛𝑠 𝑜𝑓 𝐴𝐶𝑂

The flow chart of the GA based parameter meta-optimization of ACO algorithm is given in
Figure 2.

4 RESULTS AND DISCUSSIONS

An example of a punching machine assembly consisting of 16 components as shown in Figure
3, has been considered here to demonstrate the application of the proposed approach for
parameter meta-optimization of ACO algorithm. Figure 4 presents an extract of the
disassembly matrix, which is a 16 x 48 matrix for the given 16 component assembly. Here, the
GA is used to determine the best parameter combination for ACO algorithm for solving the
given assembly sequence optimization problem. The main parameters which affect the
performance of GA are population size, crossover and mutation probability. A sensitivity
analysis of the three GA parameters was performed to determine the influence of these
parameters on the optimal solution given by GA. The following ranges of variation of different
ACO algorithm parameters have been assumed: Q value is varied between 1 and 8, ρ value is
varied between 0.1 and 0.8, gamma value is varied between 0.1 and 0.8 and the number of
iterations is varied between 50 and 190. To study the influence of GA crossover probability, it
was varied from 0.5 to 0.95 in steps of 0.05 keeping the mutation probability fixed at 0.1 and
population size fixed at 5. Each binary chromosome of GA yields a particular combination of
real parameters of the ACO algorithm. Using this parameter combination, the ACO algorithm
has been run ten times to evaluate the fitness each GA chromosome, and then their average
fitness value over these ten runs has been calculated. This average indicates the actual
performance of the ACO algorithm for a certain parameter combination. Each GA simulation is
carried out for 50 iterations. Figure 5 shows the variation of fitness value of GA with the
crossover probability. It is observed that a crossover probability of 0.7 gives the optimal
fitness value. Next, to study the influence of mutation probability, it was varied from 0.05 to
0.15 in steps of 0.025 keeping the crossover probability fixed at 0.7 and population size fixed
at 5. Figure 6 shows the variation of fitness value with the mutation probability. It is observed
that an optimal fitness value is obtained for mutation probability of 0.1. We further increased
the population size of GA from 5 to 10. However, there was no improvement of the optimal
solution given by GA. Therefore from the above results, it may be concluded that the
optimum GA parameters are crossover probability of 0.7 and mutation probability of 0.1,
when we use a GA population size of 5 and the corresponding optimum parameters of the ACO
algorithm are as follows: Q = 7, ρ = 0.1, gamma = 0.2, number of iterations = 170. Figure 7
shows the convergence plot of the GA when it was run with the above set of optimal
parameters. Figure 8 shows the convergence plot of the ACO algorithm for the given assembly
sequence optimization problem when the ACO algorithm was run with the above set of
optimal parameters recommended by the proposed GA based meta-optimization approach.
The optimal disassembly sequences along with their directions given by the meta-optimized
ACO algorithm are as follows. [(12, -Y) (11, -Y) (14, Y) (13, Y) (2, -X) (9, Z) (15, Z) (8, Z) (7, Z)
(5, Z) (6, Z) (10, Z) (16, Z) (4, Z) (3, Z) (1, Z)] and [(13, Y) (14, Y) (12, -Y) (11, -Y) (2, -X) (9,
Z) (6, Z) (7, Z) (5, Z) (8, Z) (10, Z) (16, Z) (15, Z) (3, Z) (4, Z) (1, Z)]. Each of these sequences
requires three direction changes.

Figure 2: Flowchart of the proposed Meta-optimization algorithm

Yes

No

No

Yes

To evaluate fitness of each chromosome, decode it into decimal values of ACO parameters

Initialize n chromosomes and other parameters for GA

Initialize parameters of ACO

Place all ants on the initial feasible nodes

 Check if no. of iterations
≤ maximum iterations

Calculate probability of selection of the next
node for each component of candidate list

Add the component number to tabu list of the ant

Choose next node based on roulette wheel and
move the ant to next node

Evaluate all solutions using the fitness function of ACO

Update PhM using global updating rule

Choose the individual having best fitness, B

Crossover

Mutation

Evaluate fitness of each offspring by running
ACO program and select the best offspring OB

 Check if no. of
iterations ≤ maximum

iterations

If OB<B
then replace OB with B

If the iteration sequence is the best one, update best sequence of each ant

Increase the iteration counter

Start ACO

Update PhM using local updating rule

Generate a candidate list of the ants

Select the good individuals into mating
pool by Tournament Selection after

evaluating fitness of each chromosome

Evaluate it by running ACO specified no. of times and take the mean fitness value of ACO

Empty the sequence, candidate list, and tabu list of each ant

 End GA

Start GA

Figure 3: Punching Machine assembly

Part
no.

1 2 3

Dir. X Y Z X Y Z X Y Z

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Figure 4: An extract of the Disassembly
Matrix for the Punching Machine assembly

Figure 5: Variation of fitness value of GA
with the crossover probability

Figure 6: Variation of fitness value of GA
with the mutation probability

Figure 7: Convergence plot of GA used for
meta-optimization of ACO

Figure 8: Convergence plot of ACO for
assembly sequence optimization

The corresponding assembly sequences can be obtained by reversing the disassembly
sequences, which are as follows. [(1,-Z) (3, -Z) (4, -Z) (16, -Z) (10, -Z) (6, -Z) (5, -Z) (7, -Z)
(8, -Z) (15, -Z) (9, -Z) (2, X) (13, -Y) (14, -Y) (11, Y) (12, Y)] and [(1, -Z) (4, -Z) (3, -Z) (15, -Z)
(16, -Z) (10, -Z) (8, -Z) (5, -Z) (7, -Z) (6, -Z) (9, -Z) (2, X) (11, Y) (12, Y) (14, -Y) (13, -Y)]. It
should be noted that the directions of the components would have to be reversed. The above
assembly sequences are found to be feasible as they are in accordance with the precedence

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Crossover probability

3.5

4

4.5

5

5.5

F
itn

e
ss

 v
a

lu
e

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15

Muatation probability

3.8

4

4.2

4.4

4.6

4.8

F
itn

e
ss

 v
a
lu

e

0 5 10 15 20 25 30 35 40 45 50

Number of iterations

3.5

4

4.5

5

5.5

6

F
it
n
e
s
s
 v

a
lu

e

Average fitness
Global best fitness

0 20 40 60 80 100 120 140 160
Number of iterations

2

4

6

8

10

F
itn

e
ss

 v
a
lu

e

Average fitness

Global best fitness

constraints. The global best fitness found at the end of all iterations of ACO is 3 i.e. the
minimum number of direction changes required by optimal assembly sequence is 3. The
average fitness value of all ants at the end of all iterations of ACO was found to be 3.9911.

5 CONCLUSIONS

In the present paper, an ACO algorithm based approach has been used for assembly sequence
optimisation based on minimizing the number of direction changes, while conforming to the
precedence constraints between components. Further, a binary coded GA has been proposed
for meta-optimization of ACO in order to optimize the different ACO parameters such as rate
of pheromone evaporation, pheromone decay parameter, number of iterations, etc. Some of
the reasons for choosing GA include the fact that the number of parameters in GA is less than
ACO and thus it takes less time and efforts to optimise the GA than the ACO. Moreover the
modeling of the solutions (i.e. chromosomes) in the form of binary strings is easier. The
optimized ACO parameters have been used for solving a problem of assembly sequence
optimization for a sixteen component assembly to demonstrate the effectiveness of our
proposed meta-optimization procedure. The future scope of work will include considering
some other criteria for optimization such as stability, minimizing assembly tool changes to
reduce handling time, etc.

REFERENCES

[1] Hong, D S. Cho, H S. 1993. Optimization of robotic assembly sequences using neural
network, IEEE/RSJ Int Conf on Intelligent Robots and Systems, Japan, July 26-30, pp. 232-239.
[2] Bonneville, F. Perrard, C. Henrioud, J M. 1995. A genetic algorithm to generate and
evaluate assembly plans, INRIA/IEEE Symposium on Emerging Technologies & Factory
Automation, France, October 10-13, pp 231-239.
[3] Chen, R S. Lu, K Y. Tai, P H. 2004. Optimizing assembly planning through a three-stage
integrated approach, International Journal of Production Economics, 88, pp 243–256.
[4] Wang, J F. Liu, J H. Zhong, Y F. 2005. A novel ant colony algorithm for assembly sequence
planning, International Journal of Advanced Manufacturing Technology, 25, pp 1137–1143.
[5] Cao, P B. Xiao, R B. 2007. Assembly planning using a novel immune approach. Int J Adv
Manuf Technol, 31(7), pp 770–782.
[6] Chang, CC. Tseng, HE. Meng, LP. 2009. Artificial immune systems for assembly sequence
planning exploration, Engineering Applications of Artificial Intelligence, 22, pp 1218–1232.
[7] Wang, Y. Liu, JH. 2010. Chaotic particle swarm optimization for assembly sequence
planning. Robot Computer Integrated Manufacturing, 26(2), pp 212–222.
[8] Lv, HG. Lu, C. 2010. An assembly sequence planning approach with a discrete particle
swarm optimization algorithm, Int J Adv Manuf Technol 50(5–8), pp 761–770.
 [9] Gao, L. Qian, W R. Li, X Y. Wang, J F. 2010. Application of memetic algorithm in assembly
sequence planning, Int J Adv Manuf Technol 49(9–12), pp 1175–1184.
[10] Zhou, W. Zheng, J R. Yan, J J. Wang, J F. 2011. A novel hybrid algorithm for assembly
sequence planning combining bacterial chemotaxis with genetic algorithm, Int J Adv Manuf
Technol, 52(5–8), pp 715–724.
[11] Xing, Y F. Wang, Y S. 2012. Assembly sequence planning based on a hybrid particle swarm
optimisation and genetic algorithm, Int Journal of Prod Research, 50(24), pp 7303–7312.
[12] Li, X. Qin, K. Zeng, B. Gao, L. Su, J. 2016. Assembly sequence planning based on an
improved harmony search algorithm, Int J Adv Manuf Technol, 84, pp 2367-2380.
[13] Miller, B L. Goldberg, D E. 1995. Genetic Algorithms, Tournament Selection, and the
Effects of Noise, Complex Systems, 9, pp 193- 212.

