INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
 MA21201/MA31005 - Real Analysis
 Problem Sheet 1(To be updated)
 Autumn 2021

Problem 1 Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. Prove the following:
(i) If f and g are bijective, then the composite $g \circ f: A \rightarrow C$ is bijective.
(ii) If $g \circ f$ is injective, then f is injective.
(iii) If $g \circ f$ is surjective, then g is surjective.

Problem 2 Prove that, if $A \subseteq \mathbb{N}$, then A is countable.
Problem 3 Prove that a set A is denumerable if and only if there is a bijection from A onto a denumerable set B.

Problem 4 Prove that the set of all finite subsets of \mathbb{N} is countable.
Problem 5 Prove that if A is a countable set and B is an uncountable set, then $B \backslash A$ is uncountable.
Problem 6 Let \mathbb{R} be the set of all real numbers, and let S denote the set of all functions defined on \mathbb{R}. Show that there does not exist a bijection between \mathbb{R} and S.

Problem 7 Find an explicit bijection between $\{x \in \mathbb{R}: 0<x<1\}$ and $\{x: 0 \leq x<1\}$.
Problem 8 A real number is called algebraic if it is a root of an algebraic equation $a_{0}+a_{1} x+\cdots+a_{n} x^{n}=$ 0 where the coefficients $a_{0}, a_{1}, \ldots, a_{n}$ are integers. Prove that the set of algebraic numbers is countable.

Problem 9 Show that, if $x>-1$, then $(1+x)^{n} \geq 1+n x$ for all $n \in \mathbb{N}$.
Problem 10 Show that, if $a \geq 0, b \geq 0$ and $a<b$, then $\sqrt{a}<\sqrt{b}$.
Problem 11 If $a \in \mathbb{R}$ and $0 \leq a \leq \epsilon$ for all $\epsilon>0$, then show that $a=0$.
Problem 12 Show that if $a, b \in \mathbb{R}$, then

1. $\max \{a, b\}=\frac{1}{2}(a+b+|a-b|)$ and $\min a, b=\frac{1}{2}(a+b-|a-b|)$.
2. $\min \{a, b, c\}=\min \{\min \{a, b\}, c\}$.

Problem 13 Let $S=\left\{1-\frac{(-1)^{n}}{n}: n \in \mathbb{N}\right\}$. Find $\inf S$ and $\sup S$.
Problem 14 Let S be a nonempty bounded subset of \mathbb{R}. Prove that $\sup S=-\inf \{-s: s \in S\}$ and $\inf S=-\sup \{-s: s \in S\}$.

Problem 15 Let $A:=\left\{a_{n}: n \in \mathbb{R}\right\}$ and $B=\left\{b_{n}: n \in \mathbb{N}\right\}$ be bounded sets. If $a_{n} \leq b_{n}$ for all n, then show that

1. $\sup A \leq \sup B$,
2. $\inf A \leq \inf B$.

Problem 16 Show that if A and B are bounded sets and $\sup A<\sup B$, then there exists an element $b \in B$ such that b is an upper bound for A.
Problem 17 Show that if A and B are bounded sets, then $\sup (A \cup B)=\sup \{\sup A, \sup B\}$.
Problem 18 Show that there exists a positive real number x such that $x^{2}=2$.
Problem 19 Let X be a nonempty set and let $f: X \rightarrow \mathbb{R}$ have bounded range in \mathbb{R}. If $a \in \mathbb{R}$, then show that

1. $\sup \{a+f(x): x \in X\}=a+\sup \{f(x): x \in X\}$, and
2. $\inf \{a+f(x): x \in X\}=a+\inf \{f(x): x \in X\}$.

Problem 20 Let I_{n} be a nested sequence of intervals in \mathbb{R}. If $\cap_{n=1}^{\infty} I_{n}$ contains more than one point, then $\cap_{n=1}^{\infty} I_{n}$ is uncountable.

