MA20103 - Partial differential equations

Problem Sheet IV *

November 12, 2017

1 Wave, Laplace and Heat equations

Problem 1.1. (Use d'Alembert's method) The ends of a stretched string of length $L=1$ are fixed at $x=0$ and $x=1$. The string is set to vibrate from the rest by releasing it from an initial triangular shape modeled by the function

$$
f(x)= \begin{cases}\frac{3}{10} x, & \text { if } 0 \leq x \leq \frac{1}{3} \tag{1}\\ \frac{3}{20}(1-x), & \text { otherwise }\end{cases}
$$

Determine subsequent motion of the string, given that $c=\pi$.
Problem 1.2. Solve the motion of a string of length $L=\frac{\pi}{2}$ if $c=1$ and the initial displacement and velocity are given by $f(x)=0$ and $g(x)=x \cos x$.

Problem 1.3. Solve the wave equation for a string of unit length, subject to the given conditions.

1. $f(x)=\frac{1}{2} \sin \pi x, g(x)=0$ and $c=\pi$,
2. $f(x)=\sin \pi x \cos \pi x, g(x)=0$ and $c=\pi$,
3. $f(x)=x \sin \pi x, g(x)=0$ and $c=\pi$
4. $f(x)=x(1-x), g(x)=\sin \pi x$ and $c=1$

Problem 1.4. Solve the heat equation:

$$
\begin{gathered}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial^{2}}, \quad 0<x<\pi, \quad t>0, \\
u(0, t)=0 \quad \text { and } \quad u(\pi, t)=0, t>0, \\
u(x, 0)=100, \quad 0<x<\pi
\end{gathered}
$$

[^0]Problem 1.5. Solve the heat equation:

$$
\begin{gathered}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial^{2} x}, \quad 0<x<\pi, \quad t>0 \\
u(0, t)=0 \quad \text { and } \quad u(\pi, t)=0, t>0 \\
u(x, 0)=30 \sin x, \quad 0<x<\pi
\end{gathered}
$$

Problem 1.6. Solve the heat equation:

$$
\begin{gathered}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial^{2} x}, \quad 0<x<1, \quad t>0 \\
u(0, t)=0 \quad \text { and } \quad u(1, t)=0, t>0 \\
u(x, 0)=e^{-x}, \quad 0<x<1
\end{gathered}
$$

Problem 1.7. Consider the Laplace equation:

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial^{2} y}=0, \quad 0<x<a, 0<y<b,
$$

with the boundary conditions:

$$
\begin{gathered}
u(x, 0)=f_{1}(x), \quad u(x, b)=f_{2}(x), \quad 0<x<a \\
u(0, y)=g_{1}(y), \quad u(a, y)=g_{2}(y), \quad 0<y<b .
\end{gathered}
$$

Solve the problem for the following data:

1. $a=1, b=2, f_{2}(x)=x, f_{1}(x)=g_{1}(y)=g_{2}(y)=0$.
2. $a=1, b=1, f_{1}(x)=0, f_{2}(x)=100, g_{1}(y)=0, g_{2}(y)=100$.
3. $a=2, b=1, f_{1}(x)=100, f_{2}(x)=g_{1}(y)=0, g_{2}(y)=100(1-y)$.
4. $a=b=1, f_{1}(x)=\sin 7 \pi x, f_{2}(x)=\sin \pi x, g_{1}(y)=\sin 3 \pi y, g_{2}(y)=\sin 6 \pi y$.

[^0]: *Prepared by M. Rajesh Kannan. Please write to me at rajeshkannan1.m@gmail.com, rajeshkannan@maths.iitkgp.ernet.in, if you have any queries.

