## Partial Differential Equations (MA20103)

## Assignment - 2

## First order PDE

1. Form the partial differential equation by eliminating arbitrary constants of $a$ and $b$ from the equation $2 z=(a x+y)^{2}+b$.
2. Form the partial differential equation by eliminating the arbitrary constants $h$ and $k$ from the equation $(x-h)^{2}+(y-k)^{2}+z^{2}=\lambda^{2}$.
3. Form the partial differential equation by eliminating the arbitrary function $f$ from the relation $z=x y+f\left(x^{2}+y^{2}\right)$.
4. Eliminate the arbitrary function $F$ from the relation $F\left(x^{2}+y^{2}+z^{2}, z^{2}-2 x y\right)=0$ and form the corresponding PDE.
5. Classify the following first order PDE.
(i) $p+q-z=x y$
(ii) $\left(x^{2}-y z\right) p+\left(y^{2}-z x\right) q=z^{2}-x y$
(iii) $x^{2} p^{2}+y^{2} q^{2}-z^{2}=0$
(iv) $y^{2}(y p+x q)=x^{2} z^{2}$
(v) $p q=z$
6. Solve the following $1^{\text {st }}$ order PDE by Lagrange's method
(i) $z p=-x$
(ii) $\left(x^{2}+2 y^{2}\right) p-x y q=x z$
(iii) $z\left(z^{2}+x y\right)(p x-q y)=x^{4}$
(iv) $x z p+y z q=x y$
(v) $x p-y q=x y$
(vi) $x\left(y^{2}-z^{2}\right) q-y\left(z^{2}+x^{2}\right) q=z\left(x^{2}+y^{2}\right)$
(vii) $x\left(y^{2}+z\right) p-y\left(x^{2}+z\right) q=z\left(x^{2}-y^{2}\right)$
(viii) $(y-z) p+(z-x) q=x-y$
(ix) $(y+z) p+(z+x) q=x+y$
(x) $p+q=x+y+z$
7. Find the equation of the integral surface of the differential equation $2 y(z-3) p+(2 x-z) q=y(2 x-3)$
which passes through the circle $z=0, x^{2}+y^{2}=2 x$.
8. Find the surface which is orthogonal to the one parameter system $z=c x y\left(x^{2}+y^{2}\right)$ and which passes through the hyperbola $x^{2}-y^{2}=a^{2}, z=0$.
9. If $u_{1}=\frac{\partial u}{\partial x}, u_{2}=\frac{\partial u}{\partial y}, u_{3}=\frac{\partial u}{\partial z}$ show that the equation $f\left(x, y, z, u_{1}, u_{2}, u_{3}\right)=0$ and $g\left(x, y, z, u_{1}, u_{2}, u_{3}\right)=0$ are compatible if $\frac{\partial(f, g)}{\partial\left(x, u_{1}\right)}+\frac{\partial(f, g)}{\partial\left(y, u_{2}\right)}+\frac{\partial(f, g)}{\partial\left(z, u_{3}\right)}=0$.
10. Show that the equations $x p-y q=x$ and $x^{2} p+q=x z$ are compatible and find their solution.
11. Show that the equations $x=y q$ and $z(x p+y q)=2 x y$ are compatible and solve them.
12. Use Charpit's method to solve the following PDE :
(i) $\left(p^{2}+q^{2}\right) y=q z$
(ii) $z^{2}=p q x y$
(iii) $p=(z+q y)^{2}$
(iv) $p+q=p q$
(v) $z=p^{2}-q^{2}$
(vi) $p^{2} q\left(x^{2}+y^{2}\right) y=p^{2}+q$
(vii) $z=a x+b y+\frac{a^{4}+b^{4}}{a b}$
