Partial Differential Equations (MA20103)

Assignment -1

I- Power Series Solution

1. Find power series solution of $y^{\prime \prime}+x y^{\prime}+x^{2} y=0$ about $x=0$
$\left[\right.$ Ans : $\left.y=c_{0}\left(1-\frac{1}{12} x^{4}+\frac{1}{90} x^{6}-\ldots\right)+c_{1}\left(x-\frac{1}{6} x^{3}+\frac{1}{40} x^{5}-\ldots\right)\right]$
2. Find the power series solution of $y^{\prime \prime}+(x-3) y^{\prime}+y=0$ in powers of $(x-2)$

$$
\begin{aligned}
& {\left[\text { Ans : } y=c_{0}\left(1-\frac{1}{2}(x-2)^{2}-\frac{1}{6}(x-2)^{3}-\frac{1}{12}(x-2)^{4} \ldots\right)\right.} \\
& \left.+c_{1}\left((x-2)+\frac{1}{2}(x-2)^{2}-\frac{1}{6}(x-2)^{3}-\frac{1}{6}(x-2)^{4} \ldots\right)\right]
\end{aligned}
$$

3. Solve $y^{\prime \prime}-2 x^{2} y^{\prime}+4 x y=x^{2}+2 x+4$ in powers of x $\left[\right.$ Ans : $\left.y=c_{0}\left(1-\frac{2}{3} x^{3}-\frac{2}{45} x^{6}-\ldots\right)+c_{1}\left(x-\frac{1}{6} x^{4}-\frac{1}{63} x^{7}-\ldots\right)+2 x^{2}+\frac{1}{3} x^{3}+\frac{1}{12} x^{4}+\frac{1}{45} x^{6}+\frac{1}{126} x^{7}+\ldots\right]$
4. Apply Frobenius method to solve the following differential equation in series about $\mathrm{x}=0$
$2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0$
$\left[A n s: y=a x\left(1+\frac{x^{2}}{2 \cdot 5}+\frac{x^{4}}{2 \cdot 4 \cdot 5 \cdot 9}+\ldots.\right)+b x^{\frac{1}{2}}\left(1+\frac{x^{2}}{2 \cdot 3}+\frac{x^{4}}{2 \cdot 3 \cdot 4 \cdot 7}+\ldots.\right)\right]$
5. Show that $x=0$ is a regular singular point of $\left(2 x+x^{3}\right) y^{\prime \prime}-y^{\prime}-6 x y=0$ and find its series solution about $x=0$.

$$
\left[\text { Ans }: y=a\left(1+3 x^{2}+\frac{3}{5} x^{4}+\ldots .\right)+b x^{\frac{3}{2}}\left(1+\frac{3}{8} x^{2}-\frac{3}{128} x^{4}+\ldots .\right)\right]
$$

6. Solve $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1\right) y=0$ in series near $x=0$.

$$
\begin{array}{r}
{\left[\text { Ans : } y=a x^{-1}\left(-\frac{x^{2}}{2}+\frac{x^{4}}{2^{2} \cdot 4}+\frac{x^{6}}{2^{2} \cdot 4^{2} \cdot 6}+\ldots .\right)+b x^{-1}\left(1+\frac{x^{2}}{2^{2}}-\frac{1}{2^{2} \cdot 4}\left(\frac{2}{2}+\frac{1}{4}\right) x^{4}+\ldots .\right)+\right.} \\
\left.\quad b x^{-1} \ln x\left(-\frac{x^{2}}{2}+\frac{x^{4}}{2^{2} \cdot 4}+\frac{x^{6}}{2^{2} \cdot 4^{2} \cdot 6}+\ldots .\right)\right]
\end{array}
$$

II Legendre equation and Legendre polynomial

7. Show that
$P_{0}(x)=1, P_{1}(x)=x, P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right), P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right), P_{4}(x)=\left(35 x^{4}-30 x^{2}+3\right) / 8$ where $P_{n}(x)$ is the Legendre function of $1^{\text {st }}$ kind.
8. Express $P(x)=x^{4}+2 x^{3}+2 x^{2}-x-3$ in terms of Legendre's polynomials.
9. Show that
(i) $P_{n}(1)=1$
(ii) $P_{n}(-x)=(-1)^{n} P_{n}(x)$
10. Prove that when n is odd $P_{n}(0)=0$
11. Prove that $C+\int P_{n} d x=\frac{P_{n+1}-P_{n-1}}{2 n+1}$ where C is a constant.

III Bessel equation and Bessel function

12. Show that $J_{-\frac{1}{2}}(x)=\sqrt{\left(\frac{2}{\pi x}\right)} \cos x$ and $J_{\frac{1}{2}}(x)=\sqrt{\left(\frac{2}{\pi x}\right)} \sin x$ where $J_{n}(x)$ is the Bessel function of $1^{\text {st }}$ kind.
13. Prove that
$J_{0}{ }^{\prime}=-J_{1}$
$J_{2}-J_{0}=2 J_{0}{ }^{\prime \prime}$
14. Establish the differential formula
$x^{2} J_{n}{ }^{\prime \prime}(x)=\left(n^{2}-n-x^{2}\right) J_{n}(x)+x J_{n+1}(x), n=0,1,2, \ldots$.
15. Prove that

$$
\frac{d}{d x}\left(x J_{n} J_{n+1}\right)=x\left(J_{n}^{2}-J_{n+1}^{2}\right)
$$

