MA30003/MA41003 - Linear Algebra

Problem Sheet 5 *

October 31, 2017

1 Linear operators on inner product spaces

Problem 1.1. *Give an example of a linear operator* T *on an inner product space* V *such that* $N(T) \neq N(T^*)$ *.*

Problem 1.2. Prove that if $V = W \oplus W^{\perp}$ and T is the projection on W along W^{\perp} , then $T = T^*$. Hint: Recall that $N(T) = W^{\perp}$.

Problem 1.3. Let T be a linear operator on an inner product space V. Prove that ||T(x)|| = ||x|| for all $x \in V$ if and only if $\langle T(x), T(y) \rangle = \langle x, y \rangle$ for all $x, y \in V$.

Problem 1.4. Let V be an inner product space, and let T be a linear operator on V. Prove the following results.

(a)
$$R(T^*)^{\perp} = N(T).$$

(b) If V is finite-dimensional, the $R(T^*)^{\perp} = N(T)$.

Problem 1.5. Let *V* be an inner product space, and let $y, z \in V$. Define $T : V \to V$ by $T(x) = \langle x, y \rangle z$ for all $x \in V$. First prove that *T* is linear. Then show that T^* exists, and find an explicit expression for it.

Problem 1.6. Let V be a complex inner product space, and let T be a linear operator on V. Define

$$T_1 = \frac{1}{2}(T + T^*)$$
 and $T_2 = \frac{1}{2i}(T - T^*)$.

- (a) Prove that T_1 and T_2 are self-adjoint and that $T = T_1 + iT_2$.
- (b) Suppose also that $T = U_1 + iU_2$, where U_1 and U_2 are self-adjoint. Prove that $U_1 = T_1$ and $U_2 = T_2$.
- (c) Prove that T is normal if and only if $T_1T_2 = T_2T_1$.

Problem 1.7. Let T be a linear operator on an inner product space V, and let W be a T - invariant subspace of V. Prove the following results.

^{*}Prepared by M. Rajesh Kannan. Please write to me at rajeshkannan1.m@gmail.com, rajeshkannan@maths.iitkgp.ernet.in, if you have any queries.

- (a) If T is self-adjoint, then T_W is self-adjoint.
- (b) W^{\perp} is T^* -invariant.
- (c) If W is both T-invariant and T^* -invariant, then $(T_W)^* = (T^*)_W$.
- (d) If W is both T-invariant and T^* -invariant and T is normal, then T_W is normal.

Problem 1.8. Let T be a normal operator on a finite-dimensional complex inner product space V, and let W be a subspace of . Prove that if W is T-invariant, then W is also T^* -invariant.

Problem 1.9. Let T be a normal operator on a finite-dimensional inner product space V. Prove that $N(T) = N(T^*)$ and $R(T) = R(T^*)$.

Problem 1.10. Assume that T is a linear operator on a complex (not necessarily finite-dimensional) inner product space V with an adjoint T^* . Prove the following results

- (a) If T is self-adjoint, then $\langle T(x), x \rangle$ is real for all $x \in V$.
- (b) If T satisfies $\langle T(x), x \rangle = 0$ for all $x \in V$, then T = 0. Hint: Replace x by x + y and the by x + iy, and expand the resulting inner products.
- (c) If $\langle T(x), x \rangle$ real for all $x \in V$, then $T = T^*$.

Problem 1.11. For $z \in \mathbb{C}$ define $T_z : \mathbb{C} \to \mathbb{C}$ by $T_z(u) = zu$. Characterize those z for which T_z is normal, self-adjoint, or unitary.

Problem 1.12. Let T be a self-adjoint linear operator on a finite-dimensional inner product space. Prove that $(T + iI)(T - iI)^{-1}$ is unitary.

Problem 1.13. Let U be a linear operator on a finite-dimensional inner product space V. If ||U(x)|| = ||x|| for all x in some orthonormal basis for V, must U be unitary ?. Justify your answer with a proof or a counterexample.

Problem 1.14. Suppose that if A and B are diagonalizable matrices. Prove or disprove that A is similar to B if and only if A and B are unitarily equivalent.

Problem 1.15. Let U be a unitary operator on an inner product space V, and let W be a finitedimensional U-invariant subspace of V. Prove that

- (a) U(W) = W.
- (b) W^{\perp} is U-invariant.

Problem 1.16. *Find an example of a unitary operator* U *on an inner product space and a* U*-invariant subspace* W *such that* W^{\perp} *is not* U*-invariant.*