MA30003/MA41003 - Linear Algebra

Problem Sheet 5 *

October 31, 2017

1 Linear operators on inner product spaces

Problem 1.1. Give an example of a linear operator T on an inner product space V such that $N(T) \neq$ $N\left(T^{*}\right)$.

Problem 1.2. Prove that if $V=W \oplus W^{\perp}$ and T is the projection on W along W^{\perp}, then $T=T^{*}$. Hint: Recall that $N(T)=W^{\perp}$.

Problem 1.3. Let T be a linear operator on an inner product space V. Prove that $\|T(x)\|=\|x\|$ for all $x \in V$ if and only if $\langle T(x), T(y)\rangle=\langle x, y\rangle$ for all $x, y \in V$.

Problem 1.4. Let V be an inner product space, and let T be a linear operator on V. Prove the following results.
(a) $R\left(T^{*}\right)^{\perp}=N(T)$.
(b) If V is finite-dimensional, the $R\left(T^{*}\right)^{\perp}=N(T)$.

Problem 1.5. Let V be an inner product space, and let $y, z \in V$. Define $T: V \rightarrow V$ by $T(x)=$ $\langle x, y\rangle z$ for all $x \in V$. First prove that T is linear. Then show that T^{*} exists, and find an explicit expression for it.

Problem 1.6. Let V be a complex inner product space, and let T be a linear operator on V. Define

$$
T_{1}=\frac{1}{2}\left(T+T^{*}\right) \text { and } T_{2}=\frac{1}{2 i}\left(T-T^{*}\right) .
$$

(a) Prove that T_{1} and T_{2} are self-adjoint and that $T=T_{1}+i T_{2}$.
(b) Suppose also that $T=U_{1}+i U_{2}$, where U_{1} and U_{2} are self-adjoint. Prove that $U_{1}=T_{1}$ and $U_{2}=T_{2}$.
(c) Prove that T is normal if and only if $T_{1} T_{2}=T_{2} T_{1}$.

Problem 1.7. Let T be a linear operator on an inner product space V, and let W be a T-invariant subspace of V. Prove the following results.

[^0](a) If T is self-adjoint, then T_{W} is self-adjoint.
(b) W^{\perp} is T^{*}-invariant.
(c) If W is both T-invariant and T^{*}-invariant, then $\left(T_{W}\right)^{*}=\left(T^{*}\right)_{W}$.
(d) If W is both T-invariant and T^{*}-invariant and T is normal, then T_{W} is normal.

Problem 1.8. Let T be a normal operator on a finite-dimensional complex inner product space V, and let W be a subspace of. Prove that if W is T-invariant, then W is also T^{*}-invariant.

Problem 1.9. Let T be a normal operator on a finite-dimensional inner product space V. Prove that $N(T)=N\left(T^{*}\right)$ and $R(T)=R\left(T^{*}\right)$.

Problem 1.10. Assume that T is a linear operator on a complex (not necessarily finite-dimensional) inner product space V with an adjoint T^{*}. Prove the following results
(a) If T is self-adjoint, then $\langle T(x), x\rangle$ is real for all $x \in V$.
(b) If T satisfies $\langle T(x), x\rangle=0$ for all $x \in V$, then $T=0$. Hint: Replace x by $x+y$ and the by $x+i y$, and expand the resulting inner products.
(c) If $\langle T(x), x\rangle$ real for all $x \in V$, then $T=T^{*}$.

Problem 1.11. For $z \in \mathbb{C}$ define $T_{z}: \mathbb{C} \rightarrow \mathbb{C}$ by $T_{z}(u)=z u$. Characterize those z for which T_{z} is normal, self-adjoint, or unitary.

Problem 1.12. Let T be a self-adjoint linear operator on a finite-dimensional inner product space. Prove that $(T+i I)(T-i I)^{-1}$ is unitary.

Problem 1.13. Let U be a linear operator on a finite-dimensional inner product space V. If $\|U(x)\|=$ $\|x\|$ for all x in some orthonormal basis for V, must U be unitary ?. Justify your answer with a proof or a counterexample.

Problem 1.14. Suppose that if A and B are diagonalizable matrices. Prove or disprove that A is similar to B if and only if A and B are unitarily equivalent.

Problem 1.15. Let U be a unitary operator on an inner product space V, and let W be a finitedimensional U-invariant subspace of V. Prove that
(a) $U(W)=W$.
(b) W^{\perp} is U-invariant.

Problem 1.16. Find an example of a unitary operator U on an inner product space and a U-invariant subspace W such that W^{\perp} is not U-invariant.

[^0]: *Prepared by M. Rajesh Kannan. Please write to me at rajeshkannan1.m@gmail.com, rajeshkannan@maths.iitkgp.ernet.in, if you have any queries.

