MA30003/MA41003 - Linear Algebra

Problem Sheet 4 *

October 31, 2017

1 Inner product spaces

Problem 1.1. In \mathbb{C}^{2}, show that $\langle x, y\rangle=x A y^{*}$ is an inner product, where $A=\left(\begin{array}{cc}1 & i \\ -i & 2\end{array}\right)$. Compute $\langle x, y\rangle$ for $x=(1-i, 2+3 i)$ and $y=(2+i, 3-2 i)$.

Problem 1.2. Let V be an inner product space, and suppose that x and y are orthogonal vectors in V. Prove that $\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}$.

Problem 1.3. Suppose that $\langle., .\rangle_{1}$ and $\langle., .\rangle_{2}$ are two inner products on a vector space V. Prove that $\langle.,\rangle=.\langle., .\rangle_{1}+\langle., .\rangle_{2}$ is another inner product on V.

Problem 1.4. Prove that if V is an inner product space, then $\mid\langle x, y\rangle\|=\| x\|\|$.$y \| if and only if one$ of the vectors x or y is a multiple of the other.

Problem 1.5. Let V be a vector space over F, where $F=\mathbb{R}$ or $F=\mathbb{C}$, and let W be an inner product space over F with inner product $\langle.,$.$\rangle . If T: V \rightarrow W$ is linear, Prove that $\langle x, y\rangle^{\prime}=\langle T(x), T(y)\rangle$ defines an inner product on V if and only if T is one -to-one.

Problem 1.6. Let V be an inner product space, S and S_{0} be subsets of V, and W be a finitedimensional subspace of V. Prove the following results.
(a) $S_{0} \subseteq S$ implies that $S^{\perp} \subseteq S_{0}^{\perp}$.
(b) $S \subseteq\left(S^{\perp}\right)^{\perp}$; so span $(S) \subseteq\left(S^{\perp}\right)^{\perp}$.
(c) $W=\left(W^{\perp}\right)^{\perp}$.
(d) $V=W \oplus W^{\perp}$.

Problem 1.7. Let W_{1} and W_{2} be subspaces of finite-dimensional inner product space. Prove that $\left(W_{1}+W_{2}\right)^{\perp}=W_{1}^{\perp} \cap W_{2}^{\perp}$ and $\left(W_{1} \cap W_{2}\right)^{\perp}=W_{1}^{\perp}+W_{2}^{\perp}$.

[^0]Problem 1.8. Let T be a linear operator on an inner product space V. If $\langle T(x), y\rangle=0$ for all $x, y \in V$, prove that $T=0$. In face, prove this result if the equality holds for all x and y in some basis for V.

Problem 1.9. In each of the following parts, find the orthogonal projection of the given vector on the given subspace W of the inner product space V.
(a) $V=\mathbb{R}^{2}, u=(2,6)$, and $W=\{(x, y): y=4 x\}$.
(b) $V=\mathbb{R}^{3}, u=(2,1,3)$, and $W=\{(x, y, z): x+3 y-2 z=0\}$.
(c) $V=P(\mathbb{R})$ with the inner product $\langle f(x), g(x)\rangle=\int_{0}^{1} f(t) g(t) d t, h(x)=4+3 x-2 x^{2}$, and $W=P_{1}(\mathbb{R})$

Problem 1.10. Let $V=\mathbb{C}([-1,1])$ with the inner product $\langle f, g\rangle=\int_{-1}^{1} f(t) g(t) d t$, and let W be the subspace of $P_{2}(\mathbb{R})$, viewed as a space of functions. Use the orthonormal basis obtained from standard ordered basis for W to compute the "best" (closets) second-degree polynomial approximation of the function $h(t)=e^{t}$ on the interval $[-1,1]$.

[^0]: *Prepared by M. Rajesh Kannan. Please write to me at rajeshkannan1.m@gmail.com, rajeshkannan@maths.iitkgp.ernet.in, if you have any queries.

