MA30003/MA41003 - Linear Algebra

Problem Sheet 4 *

October 31, 2017

1 Inner product spaces

Problem 1.1. In \mathbb{C}^2 , show that $\langle x, y \rangle = xAy^*$ is an inner product, where $A = \begin{pmatrix} 1 & i \\ -i & 2 \end{pmatrix}$. Compute $\langle x, y \rangle$ for x = (1 - i, 2 + 3i) and y = (2 + i, 3 - 2i).

Problem 1.2. Let V be an inner product space, and suppose that x and y are orthogonal vectors in V. Prove that $||x + y||^2 = ||x||^2 + ||y||^2$.

Problem 1.3. Suppose that $\langle ., . \rangle_1$ and $\langle ., . \rangle_2$ are two inner products on a vector space V. Prove that $\langle ., . \rangle = \langle ., . \rangle_1 + \langle ., . \rangle_2$ is another inner product on V.

Problem 1.4. Prove that if *V* is an inner product space, then $|\langle x, y \rangle|| = ||x|| \cdot ||y||$ if and only if one of the vectors *x* or *y* is a multiple of the other.

Problem 1.5. Let V be a vector space over F, where $F = \mathbb{R}$ or $F = \mathbb{C}$, and let W be an inner product space over F with inner product $\langle ., . \rangle$. If $T : V \to W$ is linear, Prove that $\langle x, y \rangle' = \langle T(x), T(y) \rangle$ defines an inner product on V if and only if T is one -to-one.

Problem 1.6. Let V be an inner product space, S and S_0 be subsets of V, and W be a finitedimensional subspace of V. Prove the following results.

- (a) $S_0 \subseteq S$ implies that $S^{\perp} \subseteq S_0^{\perp}$.
- (b) $S \subseteq (S^{\perp})^{\perp}$; so span $(S) \subseteq (S^{\perp})^{\perp}$.
- (c) $W = (W^{\perp})^{\perp}$.
- (d) $V = W \oplus W^{\perp}$.

Problem 1.7. Let W_1 and W_2 be subspaces of finite-dimensional inner product space. Prove that $(W_1 + W_2)^{\perp} = W_1^{\perp} \cap W_2^{\perp}$ and $(W_1 \cap W_2)^{\perp} = W_1^{\perp} + W_2^{\perp}$.

^{*}Prepared by M. Rajesh Kannan. Please write to me at rajeshkannan1.m@gmail.com, rajeshkannan@maths.iitkgp.ernet.in, if you have any queries.

Problem 1.8. Let T be a linear operator on an inner product space V. If $\langle T(x), y \rangle = 0$ for all $x, y \in V$, prove that T = 0. In face, prove this result if the equality holds for all x and y in some basis for V.

Problem 1.9. *In each of the following parts, find the orthogonal projection of the given vector on the given subspace W of the inner product space V*.

- (a) $V = \mathbb{R}^2, u = (2, 6)$, and $W = \{(x, y) : y = 4x\}.$
- (b) $V = \mathbb{R}^3, u = (2, 1, 3), and W = \{(x, y, z) : x + 3y 2z = 0\}.$
- (c) $V = P(\mathbb{R})$ with the inner product $\langle f(x), g(x) \rangle = \int_0^1 f(t)g(t)dt, h(x) = 4 + 3x 2x^2$, and $W = P_1(\mathbb{R})$

Problem 1.10. Let $V = \mathbb{C}([-1,1])$ with the inner product $\langle f,g \rangle = \int_{-1}^{1} f(t)g(t)dt$, and let W be the subspace of $P_2(\mathbb{R})$, viewed as a space of functions. Use the orthonormal basis obtained from standard ordered basis for W to compute the "best" (closets) second-degree polynomial approximation of the function $h(t) = e^t$ on the interval [-1, 1].