MA30003/MA41003 - Linear Algebra

Problem Sheet 3 *

August 9, 2017

1 Linear Transformations

Problem 1.1. Prove that there exits a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^3$ such that T(1,1) = (1,0,2) and T(2,3) = (1,-1,4). Find the value of T(4,6).

Problem 1.2. Let V and W be finite dimensional vector spaces and $T: V \rightarrow W$ be linear.

- 1. Prove that if dim(V) < dim(W), then T cannot be onto.
- 2. Prove that if dim(V) > dim(W), then T cannot be one-one.

Problem 1.3. *Give an example of distinct linear transformations* T *and* U *such that* N(T) = N(U) *and* R(T) = R(U).

Problem 1.4. Let $T : \mathbb{R}^3 \to \mathbb{R}$ be linear. Show that there exist scalars a, b and c such that T(x, y, z) = ax + by + cz for all $(x, y, z) \in \mathbb{R}^3$.

Problem 1.5. A function $T : V \to W$ between vector spaces V and W is called additive if T(x+y) = T(x) + T(y) for all $x, y \in V$. Prove that, if V and W are vector spaces over the field of rational numbers, then any additive function from V into W is a linear transformation.

Problem 1.6. *Prove that there is an additive function* $T : \mathbb{R} \to \mathbb{R}$ *that is not linear.*

Problem 1.7. Define $T: M_{2\times 2}(\mathbb{R}) \to \mathbb{P}_2(\mathbb{R})$ by $T(\begin{bmatrix} a & b \\ c & d \end{bmatrix}) = (a+b) + (2d)x + bx^2$. Find the matrix of the linear transformation with respect to the standard bases.

Problem 1.8. Let V be an n-dimensional vector space with an ordered basis \mathbb{B} . Define $T : V \to \mathbb{F}^n$ by $T(x) = [x]_{\mathbb{B}}$. Prove that T is linear.

Problem 1.9. Let *V* and *W* be vector spaces such that dim(V) = dim(W) and, let $T : V \to W$ be linear. Show that there exist ordered bases \mathbb{B}_1 and \mathbb{B}_2 for *V* and *W*, respectively, such that the matrix of the transformation $[T]_{\mathbb{B}_1}^{\mathbb{B}_2}$ is a diagonal matrix.

^{*}Prepared by M. Rajesh Kannan. Please write to me at rajeshkannan1.m@gmail.com, rajeshkannan@maths.iitkgp.ernet.in, if you have any queries.

Problem 1.10. Find linear transformations $U, T : \mathbb{R}^2 \to \mathbb{R}^2$ such that UT = 0 (the zero transformation), but $Tu \neq 0$.

Problem 1.11. Let V be a vector space, and let $T : V \to V$ be linear. Prove that $T^2 = 0$ if and only if $R(T) \subseteq N(T)$.

Problem 1.12. *Let V be a finite dimensional vector space, and let* $T : V \to V$ *be linear.*

- 1. Prove that, if $rank(T) = rank(T^2)$, then $R(T) \cap N(T) = \{0\}$ and $V = R(T) \bigoplus N(T)$.
- 2. Prove that $V = R(T^k) \bigoplus N(T^k)$ for some positive integer k.