MA30003/MA41003 - Linear Algebra

Problem Sheet 3 *

August 9, 2017

1 Linear Transformations

Problem 1.1. Prove that there exits a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ such that $T(1,1)=$ $(1,0,2)$ and $T(2,3)=(1,-1,4)$. Find the value of $T(4,6)$.

Problem 1.2. Let V and W be finite dimensional vector spaces and $T: V \rightarrow W$ be linear.

1. Prove that if $\operatorname{dim}(V)<\operatorname{dim}(W)$, then T cannot be onto.
2. Prove that if $\operatorname{dim}(V)>\operatorname{dim}(W)$, then T cannot be one-one.

Problem 1.3. Give an example of distinct linear transformations T and U such that $N(T)=N(U)$ and $R(T)=R(U)$.

Problem 1.4. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be linear. Show that there exist scalars a, b and c such that $T(x, y, z)=a x+b y+c z$ for all $(x, y, z) \in \mathbb{R}^{3}$.

Problem 1.5. A function $T: V \rightarrow W$ between vector spaces V and W is called additive if $T(x+y)=$ $T(x)+T(y)$ for all $x, y \in V$. Prove that, if V and W are vector spaces over the field of rational numbers, then any additive function from V into W is a linear transformation.

Problem 1.6. Prove that there is an additive function $T: \mathbb{R} \rightarrow \mathbb{R}$ that is not linear.
Problem 1.7. Define $T: M_{2 \times 2}(\mathbb{R}) \rightarrow \mathbb{P}_{2}(\mathbb{R})$ by $T\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=(a+b)+(2 d) x+b x^{2}$. Find the matrix of the linear transformation with respect to the standard bases.

Problem 1.8. Let V be an n-dimensional vector space with an ordered basis \mathbb{B}. Define $T: V \rightarrow \mathbb{F}^{n}$ by $T(x)=[x]_{\mathbb{B}}$. Prove that Tis linear.

Problem 1.9. Let V and W be vector spaces such that $\operatorname{dim}(V)=\operatorname{dim}(W)$ and, let $T: V \rightarrow W$ be linear. Show that there exist ordered bases \mathbb{B}_{1} and \mathbb{B}_{2} for V and W, respectively, such that the matrix of the transformation $[T]_{\mathbb{B}_{1}}^{\mathbb{B}_{2}}$ is a diagonal matrix.

[^0]Problem 1.10. Find linear transformations $U, T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $U T=0$ (the zero transformation), but $T u \neq 0$.

Problem 1.11. Let V be a vector space, and let $T: V \rightarrow V$ be linear. Prove that $T^{2}=0$ if and only if $R(T) \subseteq N(T)$.

Problem 1.12. Let V be a finite dimensional vector space, and let $T: V \rightarrow V$ be linear.

1. Prove that, if $\operatorname{rank}(T)=\operatorname{rank}\left(T^{2}\right)$, then $R(T) \cap N(T)=\{0\}$ and $V=R(T) \bigoplus N(T)$.
2. Prove that $V=R\left(T^{k}\right) \bigoplus N\left(T^{k}\right)$ for some positive integer k.

[^0]: *Prepared by M. Rajesh Kannan. Please write to me at rajeshkannan1.m@gmail.com, rajeshkannan@maths.iitkgp.ernet.in, if you have any queries.

