MA30003/MA41003 - Linear Algebra

Problem Sheet 2 *

August 9, 2017

1 Span, Linear independence, Basis

Problem 1.1. Show that if S_1 and S_2 are subsets of a vector space V such that $S_1 \subseteq S_2$, then $span(S_1) \subseteq span(S_2)$.

Problem 1.2. Show that if S_1 and S_2 are subsets of a vector space V, then $span(S_1 \cup S_2) = span(S_1) + span(S_2)$.

Problem 1.3. Show that the set $\{1, x, x^2, \ldots, x^n, \ldots\}$ is linearly independent in $\mathbb{P}((F))$.

Problem 1.4. Let $S = \{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}$ be a subset of \mathbb{F}^3 .

- 1. Prove that if $\mathbb{F} = \mathbb{R}$, then S is linearly independent.
- 2. Prove that if $\mathbb{F} = \mathbb{Z}_2$, then *S* is linearly dependent.

Problem 1.5. *Prove that a set S of vectors is linearly independent if and only if each finite subset of S is linearly independent.*

Problem 1.6. Let *S* be the set of nonzero polynomials in $\mathbb{P}(\mathbb{F})$ such that no two have the same degree. Prove that *S* is linearly independent.

Problem 1.7. Let V be a vector space. If the set $\{u_1, u_2\}$ is a basis, then the sets $\{u_1 + u_2, \alpha u_1\}$ and $\{\alpha u_1, \beta u_2\}$, where $\alpha, \beta \in \mathbb{F}$, is also a basis for V.

Problem 1.8. Consider the vector space $M_{n \times n}(\mathbb{R})$ over the field \mathbb{R} . Find a basis for the following subspaces of $M_{n \times n}(\mathbb{R})$ and hence the dimension.

- 1. the set of all symmetric matrices,
- 2. the set of all skew symmetric matrices,
- 3. the set of all upper triangular matrices,
- 4. the set of all matrices with trace zero.

^{*}Prepared by M. Rajesh Kannan. Please write to me at rajeshkannan1.m@gmail.com, rajeshkannan@maths.iitkgp.ernet.in, if you have any queries.

Problem 1.9. *Consider the vector space* $\mathcal{F}(\mathbb{C}, \mathbb{C})$ *over the field* \mathbb{C} *.*

- 1. Prove that $\mathcal{F}(\mathbb{C},\mathbb{C})$ is an infinite dimensional vector space.
- 2. Prove that the subspace of all even functions is an infinite dimensional subspace.
- 3. Prove that the subspace of all odd functions is an infinite dimensional subspace.
- 4. Prove that the subspace of all continuous functions is an infinite dimensional subspace.

Problem 1.10. Consider the vector space $\mathbb{P}(\mathbb{R})$ over the field \mathbb{R} . Find a basis for the subspaces of $\mathbb{P}(\mathbb{R})$.

- 1. the set of all odd polynomials,
- 2. the set of all even polynomials,
- 3. $\{p(x) \in \mathbb{P}(\mathbb{R}) : p(0) = 0\},\$
- 4. $\{p(x) \in \mathbb{P}(\mathbb{R}) : p(1729) = p(1887) = 0\}.$