MA30003/MA41003 - Linear Algebra

Problem Sheet 2 *

August 9, 2017

1 Span, Linear independence, Basis

Problem 1.1. Show that if S_{1} and S_{2} are subsets of a vector space V such that $S_{1} \subseteq S_{2}$, then $\operatorname{span}\left(S_{1}\right) \subseteq \operatorname{span}\left(S_{2}\right)$.

Problem 1.2. Show that if S_{1} and S_{2} are subsets of a vector space V, then $\operatorname{span}\left(S_{1} \cup S_{2}\right)=$ $\operatorname{span}\left(S_{1}\right)+\operatorname{span}\left(S_{2}\right)$.

Problem 1.3. Show that the set $\left\{1, x, x^{2}, \ldots, x^{n}, \ldots\right\}$ is linearly independent in $\mathbb{P}((F))$.
Problem 1.4. Let $S=\{(1,1,0),(1,0,1),(0,1,1)\}$ be a subset of \mathbb{F}^{3}.

1. Prove that if $\mathbb{F}=\mathbb{R}$, then S is linearly independent.
2. Prove that if $\mathbb{F}=\mathbb{Z}_{2}$, then S is linearly dependent.

Problem 1.5. Prove that a set S of vectors is linearly independent if and only if each finite subset of S is linearly independent.

Problem 1.6. Let S be the set of nonzero polynomials in $\mathbb{P}(\mathbb{F})$ such that no two have the same degree. Prove that S is linearly independent.

Problem 1.7. Let V be a vector space. If the set $\left\{u_{1}, u_{2}\right\}$ is a basis, then the sets $\left\{u_{1}+u_{2}, \alpha u_{1}\right\}$ and $\left\{\alpha u_{1}, \beta u_{2}\right\}$, where $\alpha, \beta \in \mathbb{F}$, is also a basis for V.

Problem 1.8. Consider the vector space $M_{n \times n}(\mathbb{R})$ over the field \mathbb{R}. Find a basis for the following subspaces of $M_{n \times n}(\mathbb{R})$ and hence the dimension.

1. the set of all symmetric matrices,
2. the set of all skew symmetric matrices,
3. the set of all upper triangular matrices,
4. the set of all matrices with trace zero.
[^0]Problem 1.9. Consider the vector space $\mathcal{F}(\mathbb{C}, \mathbb{C})$ over the field \mathbb{C}.

1. Prove that $\mathcal{F}(\mathbb{C}, \mathbb{C})$ is an infinite dimensional vector space.
2. Prove that the subspace of all even functions is an infinite dimensional subspace.
3. Prove that the subspace of all odd functions is an infinite dimensional subspace.
4. Prove that the subspace of all continuous functions is an infinite dimensional subspace.

Problem 1.10. Consider the vector space $\mathbb{P}(\mathbb{R})$ over the field \mathbb{R}. Find a basis for the subspaces of $\mathbb{P}(\mathbb{R})$.

1. the set of all odd polynomials,
2. the set of all even polynomials,
3. $\{p(x) \in \mathbb{P}(\mathbb{R}): p(0)=0\}$,
4. $\{p(x) \in \mathbb{P}(\mathbb{R}): p(1729)=p(1887)=0\}$.

[^0]: *Prepared by M. Rajesh Kannan. Please write to me at rajeshkannan1.m@gmail.com, rajeshkannan@maths.iitkgp.ernet.in, if you have any queries.

