# MA30003/MA41003 - Linear Algebra 

Problem Sheet 1*

July 20, 2017

## 1 Vector spaces

Problem 1.1. Let $\mathbb{F}$ be a field and let $M_{m \times n}(\mathbb{F})$ denote the set of all $m \times n$ matrices with entries are from the field $\mathbb{F}$. Define vector addition and and scalar multiplication on $M_{m \times n}(\mathbb{F})$ over $\mathbb{F}$ as follows: For $A, B \in M_{m \times n}(\mathbb{F})$ and $\alpha \in \mathbb{F},(A+B)_{i j}=A_{i j}+B_{i j}$ and $(\alpha A)_{i j}=\alpha A_{i j}$ for $1 \leq i \leq m$ and $1 \leq j \leq n$. Prove that $M_{m \times n}(\mathbb{F})$ is a vector space over the field $\mathbb{F}$ with respect to the operations defined as above.

Problem 1.2. Let $S$ be any nonempty set and $\mathbb{F}$ be any field, and let $\mathcal{F}(S, \mathbb{F})$ denote the set of all functions from $S$ to $\mathbb{F}$. Define vector addition and scalar multiplication on $\mathcal{F}(S, \mathbb{F})$ over $\mathbb{F}$ as follows:

For $f, g \in \mathcal{F}(S, \mathbb{F})$ and $\alpha \in \mathbb{F},(f+g)(s)=f(s)+g(s)$ and $(c f)(s)=c f(s)$ for each $s \in S$. Prove that $\mathcal{F}(S, \mathbb{F})$ is a vector space over the field $\mathbb{F}$ with respect to the operations defined as above.

Problem 1.3. Let $\mathcal{F}$ be a field and $\mathbb{P}(\mathbb{F})$ denote the set of polynomials with coefficients from the field $\mathbb{F}$. With respect to the usual addition of polynomials and scaler multiplication, prove that $\mathbb{P}(\mathbb{F})$ is vector space over $\mathbb{F}$.

Problem 1.4. Let $V$ denote the set of ordered pairs of real numbers. If $\left(a_{1}, a_{2}\right)$ and $\left(b_{1}, b_{2}\right)$ are elements of $V$ and $c \in \mathbb{R}$, define

$$
\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right)=\left(a_{1}+b_{1}, a_{2} b_{2}\right) \quad \text { and } \quad c\left(a_{1}, a_{2}\right)=\left(c a_{1}, c a_{2}\right) .
$$

Is $V$ a vector space over $\mathbb{R}$ with these operations?

## 2 Subspaces

Problem 2.1. Consider the vector space $\mathbb{R}^{2}$ over the field $\mathbb{R}$. Which of the following subsets are subspaces of $\mathbb{R}^{2}$ ?

1. $\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}+x_{2}=0\right\}$,
2. $\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}+x_{2}=-1\right\}$,

[^0]3. $\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1} x_{2}=0\right\}$.

Problem 2.2. Consider the vector space $M_{n \times n}(\mathbb{R})$ over the field $\mathbb{R}$. Which of the following subsets are subspaces of $M_{n \times n}(\mathbb{R})$ ?

1. the set of all matrices whose entries are nonnegative,
2. the set of all matrices invertible matrices,
3. the set of all symmetric matrices,
4. the set of all skew symmetric matrices,
5. the set of all upper triangular matrices,
6. the set of all matrices with trace zero.

Problem 2.3. Consider the vector space $\mathcal{F}(\mathbb{C}, \mathbb{C})$ over the field $\mathbb{C}$. Which of the following subsets are subspaces of $\mathcal{F}(\mathbb{C}, \mathbb{C})$ ?

1. the set of all even functions, ( a function $f \in \mathcal{F}(\mathbb{C}, \mathbb{C})$ is called even, if $f(-s)=f(s)$ for all $s \in \mathbb{C}$ )
2. the set of all odd functions, ( a function $f \in \mathcal{F}(\mathbb{C}, \mathbb{C})$ is called odd, if $f(-s)=-f(s)$ for all $s \in \mathbb{C}$ )
3. the set of all functions $f$ such that $f(0)=0$,
4. the set of all real valued functions,
5. the set of all continuous functions.

Problem 2.4. Consider the vector space $\mathbb{P}(\mathbb{R})$ over the field $\mathbb{R}$. Which of the following subsets are subspaces of $\mathbb{P}(\mathbb{R})$ ?

1. the set of all polynomials of degree $n$,
2. the set of all polynomials of degree less than or equal to $n$,
3. the set of all polynomials of degree greater than or equal to $n$,
4. $\{p(x) \in \mathbb{P}(\mathbb{R}): p(0)=2017\}$,
5. $\{p(x) \in \mathbb{P}(\mathbb{R}): p(0)=0\}$,
6. $\{p(x) \in \mathbb{P}(\mathbb{R}): p(1729)=p(1887)\}$.

[^0]:    *Prepared by M. Rajesh Kannan. Please write to me at rajeshkannan1.m@gmail.com, rajeshkannan@maths.iitkgp.ernet.in, if you have any queries.

