MA30003/MA41003 - Linear Algebra

Problem Sheet 1*

July 20, 2017

1 Vector spaces

Problem 1.1. Let \mathbb{F} be a field and let $M_{m \times n}(\mathbb{F})$ denote the set of all $m \times n$ matrices with entries are from the field \mathbb{F} . Define vector addition and and scalar multiplication on $M_{m \times n}(\mathbb{F})$ over \mathbb{F} as follows:

For $A, B \in M_{m \times n}(\mathbb{F})$ and $\alpha \in \mathbb{F}$, $(A + B)_{ij} = A_{ij} + B_{ij}$ and $(\alpha A)_{ij} = \alpha A_{ij}$ for $1 \le i \le m$ and $1 \le j \le n$. Prove that $M_{m \times n}(\mathbb{F})$ is a vector space over the field \mathbb{F} with respect to the operations defined as above.

Problem 1.2. Let *S* be any nonempty set and \mathbb{F} be any field, and let $\mathcal{F}(S,\mathbb{F})$ denote the set of all functions from *S* to \mathbb{F} . Define vector addition and scalar multiplication on $\mathcal{F}(S,\mathbb{F})$ over \mathbb{F} as follows:

For $f, g \in \mathcal{F}(S, \mathbb{F})$ and $\alpha \in \mathbb{F}$, (f + g)(s) = f(s) + g(s) and (cf)(s) = cf(s) for each $s \in S$. Prove that $\mathcal{F}(S, \mathbb{F})$ is a vector space over the field \mathbb{F} with respect to the operations defined as above.

Problem 1.3. Let \mathcal{F} be a field and $\mathbb{P}(\mathbb{F})$ denote the set of polynomials with coefficients from the field \mathbb{F} . With respect to the usual addition of polynomials and scaler multiplication, prove that $\mathbb{P}(\mathbb{F})$ is vector space over \mathbb{F} .

Problem 1.4. Let V denote the set of ordered pairs of real numbers. If (a_1, a_2) and (b_1, b_2) are elements of V and $c \in \mathbb{R}$, define

 $(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2b_2)$ and $c(a_1, a_2) = (ca_1, ca_2).$

Is V a vector space over \mathbb{R} *with these operations?*

2 Subspaces

Problem 2.1. Consider the vector space \mathbb{R}^2 over the field \mathbb{R} . Which of the following subsets are subspaces of \mathbb{R}^2 ?

- 1. $\{(x_1, x_2) \in \mathbb{R}^2 : x_1 + x_2 = 0\},\$
- 2. $\{(x_1, x_2) \in \mathbb{R}^2 : x_1 + x_2 = -1\},\$

^{*}Prepared by M. Rajesh Kannan. Please write to me at rajeshkannan1.m@gmail.com, rajeshkannan@maths.iitkgp.ernet.in, if you have any queries.

3. $\{(x_1, x_2) \in \mathbb{R}^2 : x_1 x_2 = 0\}.$

Problem 2.2. Consider the vector space $M_{n \times n}(\mathbb{R})$ over the field \mathbb{R} . Which of the following subsets are subspaces of $M_{n \times n}(\mathbb{R})$?

- 1. the set of all matrices whose entries are nonnegative,
- 2. the set of all matrices invertible matrices,
- 3. the set of all symmetric matrices,
- 4. the set of all skew symmetric matrices,
- 5. the set of all upper triangular matrices,
- 6. the set of all matrices with trace zero.

Problem 2.3. Consider the vector space $\mathcal{F}(\mathbb{C}, \mathbb{C})$ over the field \mathbb{C} . Which of the following subsets are subspaces of $\mathcal{F}(\mathbb{C}, \mathbb{C})$?

- 1. the set of all even functions, (a function $f \in \mathcal{F}(\mathbb{C}, \mathbb{C})$ is called even, if f(-s) = f(s) for all $s \in \mathbb{C}$)
- 2. the set of all odd functions, (a function $f \in \mathcal{F}(\mathbb{C}, \mathbb{C})$ is called odd , if f(-s) = -f(s) for all $s \in \mathbb{C}$)
- *3. the set of all functions* f *such that* f(0) = 0*,*
- 4. the set of all real valued functions,
- 5. the set of all continuous functions.

Problem 2.4. Consider the vector space $\mathbb{P}(\mathbb{R})$ over the field \mathbb{R} . Which of the following subsets are subspaces of $\mathbb{P}(\mathbb{R})$?

- 1. the set of all polynomials of degree n,
- 2. the set of all polynomials of degree less than or equal to n,
- 3. the set of all polynomials of degree greater than or equal to n,
- 4. $\{p(x) \in \mathbb{P}(\mathbb{R}) : p(0) = 2017\},\$
- 5. $\{p(x) \in \mathbb{P}(\mathbb{R}) : p(0) = 0\},\$
- 6. $\{p(x) \in \mathbb{P}(\mathbb{R}) : p(1729) = p(1887)\}.$