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Introduction

A graph is an ordered pair G = (V (G ),E (G )), where V (G ) is set of vertices of G , and E (G )

is set of edges of G .

We shall consider simple graphs only.

Adjacency matrix A(G ) = [aij ] is defined as

aij =

1 if i ∼ j

0 otherwise.
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Example

Consider the following graph:

1

2

34

5

A(G ) =



0 0 1 1 1

0 0 0 1 0

1 0 0 1 1

1 1 1 0 0

1 0 1 0 0


σ(G ) = {2.64, 0.72,−0.59,−1,−1.78}

The largest eigenvalue (spectral radius) of G = ρ(G )

The smallest positive eigenvalue of G = τ(G )
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Spectrum and structural properties of a graph

Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of a graph G . Then

G is bipartite if and only if λ1 = −λn.

G is complete if and only if λ2 = −1.

λ3 = −1 if and only if G c is isomorphic to the union of a complete bipartite graph and

some isolated vertices.

λ21 + λ22 + · · ·+ λ2n = 2|E (G )|.

λ31 + λ32 + · · ·+ λ3n = 6|T (G )|, where T (G ) is number of triangles in G .
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Spectral Graph Theory

Some of the popular research problems are

1 To find bounds on a particular eigenvalue

2 To compare an eigenvalue in two different graphs

3 To find a graph having the maximum or the minimum value of an eigenvalue in a class of

graphs

4 To find a pair of non co-spectral graphs which share a particular eigenvalue

5 To find a relation between an eigenvalue and other graph parameters

We consider the smallest positive eigenvalue.
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Hückel Graph

Graph representation of a molecule

An isobutane molecule and its Hückel graph
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Graph theory terms in chemistry

Graph Conjugated Hydrocarbon

Vertex Carbon atom

Edge Carbon-carbon bond

Adjacency matrix Huckel Matrix, topological matrix

Bipartite graph Alternant hydrocarbon

Alternant hydrocarbons are the molecules of immense interest in mathematical chemistry.
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Various energies in terms of graph spectra

For alternant hydrocarbons possessing 2n conjugated carbon atoms,

The total π-electron energy is 2
∑n

i=1 λi ,

The HOMO energy is λn,

The LUMO energy is −λn,

The HOMO LUMO sepeartion is 2λn.

HOMO: Highest Occupied Molecular Orbit

LUMO: Lowest Unoccupied Molecular Orbit

λn: The smallest positive eigenvalue of adjacency matrix

Larger the HOMO LUMO separation, more reactive is underlying π-electron system.
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The variation in λn from a molecule to molecule follows too complicated a pattern to be

summarized in general rules.

- G.G.Hall (1977)
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Important results from literature

Gutman conjectured among all non-singular trees on n vertices, Pn, the path graph on n vertices

has the minimum smallest positive eigenvalue.

Godsil (1985) proved the conjecture true.

Theorem (Hong, 1989)

For any tree T on n vertices, τ(T ) ≥ τ(Pn) and equality occurs if and only if T = Pn.

Theorem (Pavĺıková and Krc-Jediný 1990, Shao and Hong 1992)

Among all non-singular trees on n vertices, the comb graph alone has the maximum smallest

positive eigenvalue.
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Important results from literature

Zhang and Chang (1999) derived the non-singular trees on n vertices with the second

maximum and the third maximum smallest positive eigenvalue.

Chen and Zhang (2018) provided an upper bound on the smallest positive eigenvalue of

non-singular trees with maximum degree at most 3 and order greater than 11.

Rani and Barik (2020) determined the tree on n vertices with the second, third and the

fourth minimum smallest positive eigenvalue.
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Terminology

A tree is connected acyclic graph.

A tree is non-singular if its adjacency matrix is non-singular.

A pendant is a vertex of degree 1.

A quasipendant is the vertex adjacent to a pendant.

N(u) = {v : v ∼ u} is the set of neighbors of u.

Ĝ (v) is the graph obtained from G by attaching a pendant at vertex v of G .
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Perturbation by attaching a pendant

Theorem

Let G be a graph with vertices u and v such that N(u) = N(v), then τ(G ) ≥ τ(G − u).

Theorem

Let n ≥ 4 and G be a graph on n vertices with a quasipendant vertex v . Then

τ(G ) ≤ τ(Ĝ (v)).
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Attaching a pendant in a non-singular tree

Theorem

For a non-singular tree T , τ(T ) ≤ τ(T̂ (v)) for every v ∈ V (T ).

Outline of proof: Attaching a pendant does not change the number of nonzero eigenvalues in

T but it increases the order by 1. Now by Cauchy Interlacing Theorem, the result follows.
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An immediate question

Does there exist a singular tree such that τ(T ) > τ(T̂ (v)) for every
v ∈ V (T )?

NO.

We prove the result by showing that if u and v are adjacent in a tree and τ(T ) > τ(T̂ (u))

then τ(T ) ≤ τ(T̂ (v)).
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Two important results

Theorem 1

Let T be a tree on vertices 1, 2, . . . , n and Ri be the row indexed by vertex i in A(T ) for

i = 1, 2, . . . , n. If τ(T ) > τ(T̂ (i)) Then Ri ∈ Span{R1,R2, . . . ,Ri−1,Ri+1, . . . ,Rn}.

Proof is by contradiction. Let Ri /∈ Span{R1,R2, . . . ,Ri−1,Ri+1, . . . ,Rn} then it is a linearly

independent row. Adding a pendant at i can not make it dependent. So, T and T̂ (i) have

same rank and then interlacing of eigenvalues of T and T̂ (i) produce a contradiction to

τ(T ) > τ(T̂ (i)).
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Results continued...

Theorem 2

Let T be a tree on vertices 1, 2, . . . , n and Ri be the row indexed by vertex i in A(T ) for

i = 1, 2, . . . , n. If u, v are two adjacent vertices of T and

Ru ∈ Span{R1,R2, . . . ,Ru−1,Ru+1, . . . ,Rn}. Then

Rv /∈ Span{R1,R2, . . . ,Rv−1,Rv+1, . . . ,Rn}.

June 25, 2021 17 / 34



An example

A(P5) =



0 1 0 0 0

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

0 0 0 1 0


.

R5 = R3 − R1 but R4 can not be written as linear combination of other rows of A(P5).

Theorem 3

Let T be a tree and [u, v ] be an edge in T such that τ(T̂ (u)) < τ(T ). Then τ(T̂ (v)) ≥ τ(T ).
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A natural question

Can we provide a characterization of vertices u and v in a tree T such that

τ(T̂ (u)) ≤ τ(T ) and τ(T̂ (v)) ≥ τ(T )?
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Matching

Matching of a graph G is a collection of edges in G such that no two of the edges share a

common vertex. Edges lying inside matching are matching edges and others are non-matching

edges. Vertex lying on the matching edges are known to be saturated by that matching.

1 2 3 4 5 6 7

8

9

10

11

12

13
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Matching

If [u, v ] is a matching edge of G , then u and v are said to be matching mate of each other.

A matching of maximum cardinality is known as maximum matching.

Maximum matching need not be unique.

1 2 3 4 5 6 7

8

9

10

11

12

13

June 25, 2021 21 / 34



Matching

If [u, v ] is a matching edge of G , then u and v are said to be matching mate of each other.

A matching of maximum cardinality is known as maximum matching.

Maximum matching need not be unique.

1 2 3 4 5 6 7

8

9

10

11

12

13

June 25, 2021 21 / 34



Characterization of vertices in a singular tree

Theorem

Let T be a tree and M(T ) be a maximum matching of T . Let U be the set of vertices which

are unsaturated by M(T ). Let F1 = U and

Fi = {v : [v , u] ∈M(T ), u ∈ N(w) for some w ∈ Fi−1} for i ≥ 2. Let F = ∪Fi . Then

(i) τ(T ) ≥ τ(T̂ (i)) for each i ∈ F ,
(ii) τ(T ) ≤ τ(T̂ (i)) for each i ∈ V (T ) \ F .
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Example

1 2 3 4 5 6 7

8

9

10

11

12

13

Vertex 3 is unsaturated, so, F1 = {3}. Now N(3) = {4, 2} so, F2 = {5, 1}. N(5) = {4, 6, 9}
and N(1) = {2}. So, F3 = {7, 8}. Again 7, 8 themselves are matching mates of their

neighbors. Thus, F = {3, 5, 1, 7, 8}. By Matlab calculation, we see that τ(T ) = 0.5140,

τ(T̂ (3)) = 0.3001, τ(T̂ (5)) = 0.3478, τ(T̂ (1)) = 0.2621, τ(T̂ (7)) = 0.2928, τ(T̂ (8)) =

0.2542, τ(T̂ (2)) = 0.5608, τ(T̂ (4)) = 0.6473, τ(T̂ (6)) = 0.5222, τ(T̂ (9)) =

0.5262, τ(T̂ (10)) = 0.5436, τ(T̂ (11)) = 0.5737, τ(T̂ (12)) = 0.6523, τ(T̂ (13)) = 0.5463,.
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Example

1 2 3 4 5 6 7

8

9

10

11

12

13

Vertex 7 is unsaturated, so, F1 = {7}. Now N(7) = {6} so, F2 = {5}. N(5) = {4, 6, 9}. So,

F3 = {3, 8}. Again N(3) = {4, 2} and N(8) = {9}. So F4 = {1}.Thus, F = {7, 5, 3, 8, 1}.
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Corona tree

Corona tree of a tree T is obtained by attaching a pendant vertex at each vertex of T ,

and is denoted by T̃ .

If λ is an eigenvalue of T , then λ±
√
λ2+4
2 are the eigenvalues of T̃ .

ρ(T̃ ) =
ρ(T )+

√
ρ(T )2+4
2

τ(T̃ ) =
ρ(T )−

√
ρ(T )2+4
2

P̃5
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A graph operation

Definition (Xu 1997)

Let T be a tree and [u, v ] be an edge in T such that each of the vertices u and v has degree

at least two. Denote by T [u, v ], the tree obtained from T by deleting the edge [u, v ],

identifying the vertices u and v (suppose that the new vertex is still denoted by u), and then

attaching a new pendant vertex v at u.

u v

u

v

T T [v , u]
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A helpful Lemma

A matching which saturates every vertex is known as perfect matching.

Lemma (Barik, Neumann and Pati 2006)

Let T be a non-singular tree with a perfect matching M. If T is not a corona tree, then T

has two vertices i and j of degree at least two such that [i , j ] ∈M and τ(T [i , j ]) > τ(T ).
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The maximal non-singular tree on n vertices

Theorem

For every non-singular non-corona tree T on n vertices, there exist a corona tree T ′ on n

vertices such that τ(T ) < τ(T ′).

Corollary

Let T be a non-singular tree on 2n vertices. Then

τ(T ) ≤
√
cos2(π/(n + 1)) + 1− cos(π/(n + 1))

and equality holds if and only if T = P̃n.
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A construction of graphs having the same τ(T )
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Construction

If n is even, then there exist vertices i and j in P2n such that τ(P̂2n(i)) = τ(P̂2n(j)).

Theorem

For k ≥ 1, τ(P̂4k(2k − 1)) = τ(P̂4k(1)).

Example: If we take k = 2, then the two trees are P̂8(3) and P̂8(1) and the smallest positive

eigenvalue for both the trees is 0.6180.
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Construction

If n is odd, there may not exist two vertices i and j in P2n such that τ(P̂2n(i)) = τ(P̂2n(j)).

Example

Consider n = 5, take P10 and obtain P̂10(i) for i = 1, 2, . . . , 5. Matlab computation of

τ(P̂10(i)) gives

τ(P̂10(1)) = 0.5176, τ(P̂10(2)) = 0.3129, τ(P̂10(3)) = 0.5509, τ(P̂10(4)) = 0.3731 and

τ(P̂10(5)) = 0.4648.

Here no two graphs have the same smallest positive eigenvalue.
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Thank you!
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