A generalization of Fiedler's lemma and the spectra of *H*-join of graphs

Dr. M. Saravanan Government Arts and Science College (Erstwhile Madurai Kamaraj University Constituent College) Sattur

> E-Seminar Organized By IIT Kharagpur

August 13, 2021

Generalization of Fiedler's Lemma H-generalized join operation constrained by vertex subsets References

2 Generalization of Fiedler's Lemma

4 H-generalized join operation constrained by vertex subsets

M. Saravanan, S. P. Murugan, G. Arunkumar, A generalization of Fiedler's lemma and the spectra of H-join of graphs, Lin. Alg.
Appl. 625(8) 20-43
S. P. Murugan, Post Dotoral Fellow, IISER Mohali.
G. Arunkumar, Post Dotoral Fellow, IISc B.

Generalization of Fiedler's Lemma Cospectral graphs H-generalized join operation constrained by vertex subsets References *H*-join operation of graphs Fiedler's lemma Main function of a matrix

H-join operation of graphs

Let *H* be a graph with vertex set $\{v_1, v_2, \ldots, v_k\}$ and let $\mathcal{F} = \{G_1, G_2, \ldots, G_k\}$ be a family of graphs. In [4], the *H*-join operation of the graphs G_1, G_2, \ldots, G_k , denoted by $\bigvee_{H} \mathcal{F}_i$ is obtained by replacing the vertex v_i of *H* by the graph G_i for $1 \le i \le k$ and every vertex of G_i is made adjacent with every vertex of G_j , whenever v_i is adjacent to v_i in *H*.

Precisely,
$$\bigvee_{H} \mathcal{F}$$
 is the graph with vertex set $V(\bigvee_{H} \mathcal{F}) = \bigcup_{i=1}^{k} V(G_i)$ and edge set
 $E(\bigvee_{H} \mathcal{F}) = (\bigcup_{i=1}^{k} E(G_i)) \cup (\bigcup_{v_i v_j \in E(H)} \{xy : x \in V(G_i), y \in V(G_j)\}).$

(日) (同) (三) (三)

Generalization of Fiedler's Lemma Cospectral graphs H-generalized join operation constrained by vertex subsets References *H*-join operation of graphs Fiedler's lemma Main function of a matrix

Example

Consider the graphs $H = P_3, G_1 = P_3, G_2 = K_{1,3}$ and $G_3 = K_2 \cup K_1$ as follows.

æ

Generalization of Fiedler's Lemma Cospectral graphs H-generalized join operation constrained by vertex subsets References *H*-join operation of graphs Fiedler's lemma Main function of a matrix

<ロ> <同> <同> < 回> < 回>

æ

Generalization of Fiedler's Lemma Cospectral graphs H-generalized join operation constrained by vertex subsets References *H*-join operation of graphs Fiedler's lemma Main function of a matrix

In [21], the *H*-join operation of the graphs was initially introduced as **generalized composition by Schwenk**, denoted by $H[G_1, G_2, \ldots, G_k]$. Also, the same operation is studied in some other names as generalized lexicographic product and joined union in [23, 19, 22]. When all G_i 's are equal to the same graph G, it is called the lexicographic product[15], denoted by H[G].

In [21] it is remarked by Schwenk, that "In general, it does not appear likely that the characteristic polynomial of the generalized composition can always be expressed in terms of the characteristic polynomials of H, G_1, G_2, \ldots, G_k ".

Generalization of Fiedler's Lemma Cospectral graphs H-generalized join operation constrained by vertex subsets References *H*-join operation of graphs Fiedler's lemma Main function of a matrix

In this work, we prove that it is possible to express the characteristic polynomial of *H*-join operation of graphs (i.e. generalized composition) in terms of

- the characteristic polynomials of G_1, G_2, \ldots, G_k
- the 'main' functions of G_1, G_2, \ldots, G_k
- and another function obtained from the adjacency matrix of H.

Moreover for the H-join operation of any graphs, we obtain the characteristic polynomial and the spectrum of its **universal adjacency matrix**.

(日) (同) (三) (三)

Generalization of Fiedler's Lemma Cospectral graphs H-generalized join operation constrained by vertex subsets References *H*-join operation of graphs Fiedler's lemma Main function of a matrix

Lemma [12, Lemma 2.2]

Let A be a symmetric $m \times m$ matrix with eigenvalues $\alpha_1, \alpha_2, \ldots, \alpha_m$ and B be a symmetric $n \times n$ matrix with eigenvalues $\beta_1, \beta_2, \ldots, \beta_n$. Let u be an eigenvector of A corresponding to α_1 and v be an eigenvector of B corresponding to β_1 such that ||u|| = ||v|| = 1. Then for any constant ρ the matrix

$$C = \begin{bmatrix} A & \rho u v^t \\ \rho v u^t & B \end{bmatrix}$$

has eigenvalues $\alpha_2, \ldots, \alpha_m, \beta_2, \ldots, \beta_n, \gamma_1, \gamma_2$ where γ_1 and γ_2 are the eigenvalues of the matrix

$$\widehat{\mathsf{C}} = \begin{bmatrix} \alpha_1 & \rho \\ \rho & \beta_1 \end{bmatrix}$$

イロン イボン イヨン イヨン

H-join operation of graphs Fiedler's lemma Main function of a matrix

In [3, 4], this lemma is called Fiedler's lemma. It is easy to see that, this lemma can be used to find the spectrum of H-join of regular graphs when $H = K_2$.

Theorem[4]

Let M_i be a symmetric matrix of order n_i and u_i be an eigenvector of M_i corresponding to the eigenvalue α_i , such that $\|u_i\| = 1$ for $1 \le i \le k$. Let $\rho_{i,j}$ be a collection of arbitrary scalars such that $\rho_{i,j} = \rho_{j,i}$ for $1 \le i \le k$. Considering

$$\mathbf{M} = (M_1, M_2, \ldots, M_k), \mathbf{u} = (u_1, u_2, \ldots, u_k)$$

as k-tuples, and

$$\rho = (\rho_{12}, \dots, \rho_{1,k}, \rho_{23}, \dots, \rho_{2,k}, \dots, \rho_{k-1k})$$

as $\frac{k(k-1)}{2}$ -tuple, the following matrices are defined. (To be Cont.)

(日) (同) (三) (三)

Generalization of Fiedler's Lemma Cospectral graphs H-generalized join operation constrained by vertex subsets References *H*-join operation of graphs **Fiedler's lemma** Main function of a matrix

Theorem[4](Cont.)

$$\begin{split} & \mathcal{A}(\mathbf{M},\mathbf{u},\rho) := \begin{bmatrix} M_1 & \rho_{1,2}u_1u_2^t & \cdots & \rho_{1,k}u_1u_k^t \\ \rho_{2,1}u_2u_1^t & M_2 & \cdots & \rho_{2,k}u_2u_k^t \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{k,1}u_ku_1^t & \rho_{k,2}u_ku_2^t & \cdots & M_k \end{bmatrix} \text{ and } \widehat{A}(\mathbf{M},\mathbf{u},\rho) := \\ & \begin{bmatrix} \alpha_1 & \rho_{1,2} & \cdots & \rho_{1,k} \\ \rho_{2,1} & \alpha_2 & \cdots & \rho_{2,k} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{k,1} & \rho_{k,2} & \cdots & \alpha_k \end{bmatrix} \\ \cdot \\ & \text{Then spec}(\mathcal{A}(\mathbf{M},\mathbf{u},\rho)) = \left(\bigcup_{i=1}^k (\operatorname{spec}(M_i) \setminus \{\alpha_i\}) \right) \cup \operatorname{spec}(\widehat{A}(\mathbf{M},\mathbf{u},\rho)). \end{split}$$

æ

Generalization of Fiedler's Lemma Cospectral graphs H-generalized join operation constrained by vertex subsets References *H*-join operation of graphs **Fiedler's lemma** Main function of a matrix

Adjacency matrix of H-join of graphs

Consider a graph H on k vertices and a family of graphs $\mathcal{F} = \{G_1, G_2, \ldots, G_k\}$. Let $G = \bigvee_H \mathcal{F}$ be the H-join of graphs in \mathcal{F} , and let n_i , A_i and D_i be the number of vertices, the adjacency matrix and the degree matrix of the graph G_i respectively, for $1 \leq i \leq k$. Also let $\rho_{i,j}$ be the scalars defined by $\rho_{i,j} = \rho_{j,i} = 1$ if $ij \in E(H)$ and 0 otherwise, for $1 \leq i, j \leq k$ and $i \neq j$. Then the adjacency matrix of the graph G can be written as

$$A(G) = \begin{bmatrix} A_1 & \rho_{1,2}\mathbf{1}_{n_1}\mathbf{1}_{n_2}^t & \cdots & \rho_{1,k}\mathbf{1}_{n_1}\mathbf{1}_{n_k}^t \\ \rho_{2,1}\mathbf{1}_{n_2}\mathbf{1}_{n_1}^t & A_2 & \cdots & \rho_{2,k}\mathbf{1}_{n_2}\mathbf{1}_{n_k}^t \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{k,1}\mathbf{1}_{n_k}\mathbf{1}_{n_1}^t & \rho_{k,2}\mathbf{1}_{n_k}\mathbf{1}_{n_2}^t & \cdots & A_k \end{bmatrix} .$$
(1)

(日) (同) (三) (三)

Generalization of Fiedler's Lemma Cospectral graphs H-generalized join operation constrained by vertex subsets References *H*-join operation of graphs **Fiedler's lemma** Main function of a matrix

Theorem[4] Spectrum of H-join of regular graphs

Let *H* be a graph with vertex set $\{v_1, v_2, \ldots, v_k\}$ and let $\mathcal{F} = \{G_1, G_2, \ldots, G_k\}$ be a family of graphs. Let $G = \bigvee_{H} \mathcal{F}$ be the *H*-join of graphs in \mathcal{F} . Suppose the graph G_i is r_i -regular for $1 \le i \le k$ on n_i vertices. Then

$$\operatorname{spec}(A(G)) = \left(\bigcup_{i=1}^{k} \left(\operatorname{spec}(G_i) \setminus \{r_i\}\right)\right) \cup \operatorname{spec}(\widetilde{A}(G))$$

where
$$\widetilde{A}(G) = \begin{bmatrix} \frac{r_1}{\sqrt{n_2 n_1} \rho_{2,1}} & \frac{\sqrt{n_1 n_2} \rho_{1,2}}{r_2} & \cdots & \sqrt{n_1 n_k} \rho_{1,k} \\ \frac{1}{\sqrt{n_2 n_1} \rho_{2,1}} & r_2 & \cdots & \sqrt{n_2 n_k} \rho_{2,k} \\ \frac{1}{\sqrt{n_k n_1} \rho_{k,1}} & \frac{1}{\sqrt{n_k n_2} \rho_{k,2}} & \cdots & r_k \end{bmatrix}$$

• • • • • • • • • • • • •

3 x 3

Generalization of Fiedler's Lemma Cospectral graphs H-generalized join operation constrained by vertex subsets References

H-join operation of graphs Fiedler's lemma Main function of a matrix

Notations

- *I*, *I*_n- Identity matrix
- J, J_n- All one matrix
- 1_n- All one vector

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

Generalization of Fiedler's Lemma Cospectral graphs H-generalized join operation constrained by vertex subsets References *H*-join operation of graphs Fiedler's lemma Main function of a matrix

Main eigenvalues and Main angles

Suppose A(G) has spectral decomposition $A(G) = \sum_{i=1}^{k} \theta_i E_{\theta_i}$, where θ_i 's are distinct eigenvalues of G and E_{θ_i} is the orthogonal projection on the eigenspace of θ_i , $\mathcal{E}(\theta_i) = ker(A(G) - \theta_i I_n)$.

- An eigenvalue θ_i is called a main eigenvalue if the corresponding eigenspace $\mathcal{E}(\theta_i)$ is not orthogonal to $\mathbf{1}_n$.
- The cosines of the angles between $\mathbf{1}_n$ and the eigenspaces of A are known as **main angles** of G, given by $\beta_i = \frac{1}{\sqrt{n}} ||E_{\theta_i} \mathbf{1}_n||$, for $1 \le i \le k$.
- So θ_i is a main eigenvalue if and only if $\beta_i \neq 0$.

For more on the main angles and main eigenvalues, we refer [20] and references therein.

(日) (同) (三) (三)

H-join operation of graphs Fiedler's lemma Main function of a matrix

Consider the field of rational functions $\mathbb{C}(\lambda)$. The det $(\lambda I - A)$ is a non-zero element of $\mathbb{C}(\lambda)$ and hence the matrix $\lambda I - A$ is invertible over $\mathbb{C}(\lambda)$.

In [17], the function $\mathbf{1}_{n}^{t}(\lambda I_{n} - A(G))^{-1}\mathbf{1}_{n}$ is introduced in the name of coronal of G and is used to find the characteristic polynomial of the corona of two graphs. Since $E_{\theta_{i}}^{2} = E_{\theta_{i}}$, it is easy to see that

$$\mathbf{1}_{n}^{t}(\lambda I_{n} - \mathcal{A}(G))^{-1}\mathbf{1}_{n} = \boldsymbol{\Sigma}_{i=1}^{k} \frac{\mathbf{1}_{n}^{t} \boldsymbol{E}_{\theta_{i}} \mathbf{1}_{n}}{\lambda - \theta_{i}} = \boldsymbol{\Sigma}_{i=1}^{k} \frac{\|\boldsymbol{E}_{\theta_{i}} \mathbf{1}_{n}\|^{2}}{\lambda - \theta_{i}} = \boldsymbol{\Sigma}_{i=1}^{k} \frac{n\beta_{i}^{2}}{\lambda - \theta_{i}},$$
(2)

in which only non-vanishing terms are those terms corresponding to main eigenvalues.

(日) (同) (三) (三)

Generalization of Fiedler's Lemma Cospectral graphs H-generalized join operation constrained by vertex subsets References *H*-join operation of graphs Fiedler's lemma Main function of a matrix

Because of this relationship among main eigenvalues, main angles, and coronal of the graph G, we prefer to call $\mathbf{1}_{n}^{t}(\lambda I_{n} - A(G))^{-1}\mathbf{1}_{n}$, the main function of the graph G, and denote as $\Gamma_{G}(\lambda)$. Moreover for any vectors u and v, and a matrix M of the same dimension, we introduce the following notions.

Main function of a matrix

Let *M* be an $n \times n$ complex matrix, and let *u* and *v* be $n \times 1$ complex vectors. The main function associated to the matrix *M* corresponding to the vectors *u* and *v*, denoted by $\Gamma_M(u, v)$, is defined to be $\Gamma_M(u, v; \lambda) = v^t (\lambda I - M)^{-1} u \in \mathbb{C}(\lambda)$. When u = v, we denote $\Gamma_M(u, v; \lambda)$ by $\Gamma_M(u; \lambda)$.

Generalization of Fiedler's Lemma Cospectral graphs H-generalized join operation constrained by vertex subsets References *H*-join operation of graphs Fiedler's lemma Main function of a matrix

A generalization of Main eigenvalue

Let *M* be an $n \times n$ normal matrix over \mathbb{C} and let *u* be an $n \times 1$ complex vector. An eigenvalue λ of *M* is called as *u*-main eigenvalue if the corresponding eigenspace $\mathcal{E}_M(\lambda)$ is not orthogonal to the vector *u*. In the case of $u = \mathbf{1}_n$, the all-one vector, we don't specify the vector and call eigenvalue λ of *M* as the main eigenvalue of *M*.

(日) (同) (三) (三)

Generalization of Fiedler's Lemma Cospectral graphs H-generalized join operation constrained by vertex subsets References *H*-join operation of graphs Fiedler's lemma Main function of a matrix

Some results on Main function

- Let M be a complex normal matrix of order n and let u be any n × 1 vector. Then the poles of u^t(λI − M)⁻¹u are the u-main eigenvalues of M and are simple.
- Let *M* be a matrix of order *n* with an eigenvector *u* corresponding to the eigenvalue μ . Then $\Gamma_M(u; \lambda) = \frac{||u||^2}{\lambda - u}$.

• • • • • • • • • • • • •

Main Theorem Universal adjacency matrix Generalized Corona

Now we can state our main result, a new generalization of Fiedler's lemma.

Main theorem: Generalization of Fiedler's lemma

- Let M_i be a complex matrix of order n_i, and let u_i and v_i be arbitrary complex vectors of size n_i × 1 for 1 ≤ i ≤ k. Let n = Σ^k_{i=1}n_i. Let ρ_{i,j} be arbitrary complex numbers for 1 ≤ i, j ≤ k and i ≠ j.
- For each $1 \le i \le k$, let $\phi_i(\lambda) = \det(\lambda |_{n_i} M_i)$ be the characteristic polynomial of the matrix M_i and $\Gamma_i(\lambda) = \Gamma_{M_i}(u_i, v_i; \lambda) = v_i^t(\lambda I M_i)^{-1}u_i$.
- Let M be the k-tuple (M₁, M₂,..., M_k), u be the 2k-tuple (u₁, v₁, u₂, v₂..., u_k, v_k) and ρ be the k(k 1)-tuple (ρ_{1,2}, ρ_{1,2}..., ρ_{1,k}, ρ_{2,1}, ρ₂₃,..., ρ_{2,k},..., ρ_{k,1}, ρ_{k,2},..., ρ_{k-1k}). (To be Contd.)

(日) (同) (三) (三)

Main Theorem Universal adjacency matrix Generalized Corona

Main theorem: Generalization of Fiedler's lemma(Contd.)

Considering M, u and ρ , the following matrices are defined:

$$A(\mathbf{M}, \mathbf{u}, \rho) := \begin{bmatrix} M_1 & \rho_{1,2}u_1v_2^{\dagger} & \cdots & \rho_{1,k}u_1v_k^{\dagger} \\ \rho_{2,1}u_2v_1^{\dagger} & M_2 & \cdots & \rho_{2,k}u_2v_k^{\dagger} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{k,1}u_kv_1^{\dagger} & \rho_{k,2}u_kv_2^{\dagger} & \cdots & M_k \end{bmatrix}$$

and $\widetilde{A}(\mathbf{M}, \mathbf{u}, \rho) := \begin{bmatrix} \frac{1}{\Gamma_1(\lambda)} & -\rho_{1,2} & \cdots & -\rho_{1,k} \\ -\rho_{2,1} & \frac{1}{\Gamma_2(\lambda)} & \cdots & -\rho_{2,k} \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix}$

(To be Contd.)

3

 $\begin{bmatrix} & & & & \\ -\rho_{k,1} & & -\rho_{k,2} & & \\ & & & & \end{bmatrix}$

Main Theorem Universal adjacency matrix Generalized Corona

Main theorem: Generalization of Fiedler's lemma(Contd.)

Then the characteristic polynomial of $A(\mathbf{M}, \mathbf{u}, \rho)$ is given as

$$\det(\lambda I_n - A(\mathbf{M}, \mathbf{u}, \rho)) = \left(\prod_{i=1}^k \phi_i(\lambda) \Gamma_i(\lambda) \right) \det(\widetilde{A}(\mathbf{M}, \mathbf{u}, \rho)).$$
(3)

Introduction Generalization of Fiedler's Lemma Cospectral graphs

Main Theorem Universal adjacency matrix Generalized Corona

Cospectral graphs H-generalized join operation constrained by vertex subsets References

Previous generalization as Corollary of Main theorem

Consider the notations defined in Main theorem. Suppose $u_i = v_i$ is an eigenvector of M_i corresponding to an eigenvalue α_i with $||u_i|| = 1$, then the characteristic polynomial of $A(\mathbf{M}, \mathbf{u}, \rho)$ is

$$\begin{split} \phi(\boldsymbol{A}(\mathbf{M},\mathbf{u},\rho)) &= \frac{\phi_1}{\lambda - \alpha_1} \frac{\phi_2}{\lambda - \alpha_2} \cdots \frac{\phi_{k_k}}{\lambda - \alpha_k} \det(\widetilde{\boldsymbol{A}}(\mathbf{M},\mathbf{u},\rho)) \\ \text{where } \widetilde{\boldsymbol{A}}(\mathbf{M},\mathbf{u},\rho) &= \begin{bmatrix} \lambda - \alpha_1 & -\rho_{1,2} & \cdots & -\rho_{1,k} \\ -\rho_{2,1} & \lambda - \alpha_2 & \cdots & -\rho_{2,k} \\ \vdots & \vdots & \ddots & \vdots \\ -\rho_{k,1} & -\rho_{k,2} & \cdots & \lambda - \alpha_k \end{bmatrix} \end{split}$$

(日) (同) (三) (三)

Main Theorem Universal adjacency matrix Generalized Corona

Proof of Main theorem by induction

- A Lemma: $det(\lambda I - A + \alpha uv^{t}) = (1 + \alpha \Gamma) det(\lambda I - A) = (1 + \alpha \Gamma)\phi_{A}(\lambda)$
 - We prove the result of main theore by using induction on k.
 - For convenience, we take Γ_i = Γ_i(λ). The base case k = 1 is clear.
 - We prove the result also for k = 2 for the sake of understanding.

$$\begin{aligned} \begin{vmatrix} \lambda I_{n_1} - M_1 & -\rho_{1,2} u_1 v_1^t \\ -\rho_{2,1} u_2 v_1^t & \lambda I_{n_2} - M_2 \end{vmatrix} \\ &= \det(\lambda I_{n_2} - M_2) \det(\lambda I_{n_1} - M_1 - \rho_{1,2} \rho_{2,1} \Gamma_2 u_1 v_1^t) \\ &= \phi_1 \phi_2 (1 - \rho_{1,2} \rho_{2,1} \Gamma_2 \Gamma_1) \\ &= \phi_1 \phi_2 \begin{vmatrix} 1 & -\rho_{1,2} \Gamma_1 \\ -\rho_{2,1} \Gamma_2 & 1 \end{vmatrix}$$

(日) (同) (三) (三)

Introduction Generalization of Fiedler's Lemma Cospectral graphs

H-generalized join operation constrained by vertex subsets References Main Theorem Universal adjacency matrix Generalized Corona

Spectrum

Suppose the matrices M_i 's are normal and $\{\theta_1, \theta_2, \dots, \theta_{m_i}\}$ is the set of distinct u_i -main eigenvalues of M_i , for $1 \le i \le k$. Then we can write

$$\Gamma_i = \frac{f_i}{g_i} \text{ where } g_i = \prod_{j=1}^{m_i} (\lambda - \theta_j).$$
(4)

< ロ > < 同 > < 回 > < 回

э

Hence by the Main theorem,

$$\det(\lambda I - A(\mathbf{M}, \mathbf{u}, \rho)) = \left(\frac{\phi_1}{g_1}\right) \dots \left(\frac{\phi_k}{g_k}\right) \Phi(\lambda)$$
(5)

	$\begin{vmatrix} g_1(\lambda) \\ -\rho_{2,1}f_2(\lambda) \end{vmatrix}$	$-\rho_{1,2}f_1(\lambda)$ $g_2(\lambda)$	· · · · · · ·	$-\rho_{1,k}f_1(\lambda)$ $-\rho_{2,k}f_2(\lambda)$
where $\Phi(\lambda) =$	· .			<i>.</i>
	$ \frac{1}{-\rho_{k,1}f_k(\lambda)}$	$-\rho_{k,2}f_k(\lambda)$	·. 	$g_k(\lambda)$

Main Theorem Universal adjacency matrix Generalized Corona

So we can describe the spectrum of $A(\mathbf{M}, \mathbf{u}, \rho)$ as follows.

Main Theorem(Spectrum version)

Consider the notations defined above. Suppose the matrices M_i 's are normal, then

- Every eigenvalue, which is not a u_i -main eigenvalue of M_i , say λ with multiplicity $m(\lambda)$ is an eigenvalue of $A(\mathbf{M}, \mathbf{u}, \rho)$ with multiplicity $m(\lambda)$.
- Every u_i-main eigenvalue of M_i, say λ with multiplicity m(λ) is an eigenvalue of A(M, u, ρ) with multiplicity m(λ) − 1.
- Remaining eigenvalues are the roots of the polynomial $\Phi(\lambda)$.

• • • • • • • • • • • • •

Main Theorem Universal adjacency matrix Generalized Corona

The universal adjacency matrix of a graph G is defined as follows:

Universal adjacency matrix

- Let A(G), I, J, and D(G) be the adjacency matrix of G, the identity matrix, the all-one matrix, and the degree matrix of G, respectively.
- Any matrix of the form U(G) = αA + βI + γJ + δD where α, β, γ, δ ∈ ℝ and α ≠ 0 is called the universal adjacency matrix of G.

Many interesting and important matrices associated to a graph can be obtained as special cases of U(G). For example, we get adjacency matrix A(G), Laplacian matrix L(G) = D(G) - A(G), signless Laplacian matrix Q(G) = D(G) + A(G), and Seidel matrix S(G) = J - I - 2A(G)by taking appropriate values for α, β, γ , and δ .

(日) (同) (日) (日)

Main Theorem Universal adjacency matrix Generalized Corona

Degree of vertex in H-join

Let *H* be a graph with vertex set $\{v_1, \ldots, v_k\}$ and $\mathcal{F} = \{G_1, G_2, \ldots, G_k\}$ be a family of *k* graphs such that $V(G_i) = \{v_1^{(i)}, \ldots, v_{n_i}^{(i)}\}$ for $1 \le i \le k$. Then the degree of the vertex $v_j^{(i)}$ in $G = \bigvee_H \mathcal{F}$ is given by

$$\deg_{G}(v_{j}^{(i)}) = \deg_{G_{i}}(v_{j}^{(i)}) + w_{i}, 1 \leq i \leq k, 1 \leq j \leq n_{i}$$

where $w_i = \sum_{v_l \in N_H(v_i)} n_l$.

Main Theorem Universal adjacency matrix Generalized Corona

UA matrix of H-join

Let *H* be a graph on *k* vertices and $\mathcal{F} = \{G_1, G_2, \ldots, G_k\}$ be a family of any graphs. Consider the graph $G = \bigvee \mathcal{F}$. Let $\phi_i(\lambda)$ be the characteristic polynomial of U_i and $\Gamma_i(\lambda) = \Gamma_{U_i}(\mathbf{1}_{n_i}; \lambda)$. Then we have the

following.

i) The characteristic polynomial of the universal adjacency matrix U(G) is

$$\phi_{U(G)}(\lambda) = \left(\Pi_{i=1}^{k} \phi_{i}(\lambda - \delta w_{i}) \Gamma_{i}(\lambda - \delta w_{i}) \right) \det(\widetilde{U}(G))$$

(日) (同) (三) (三)

Introduction Generalization of Fiedler's Lemma Cospectral graphs

Main Theorem Universal adjacency matrix Generalized Corona

Cospectral graphs H-generalized join operation constrained by vertex subsets References

UA matrix of *H*-join

where
$$\widetilde{U}(G) = \begin{bmatrix} \frac{1}{\Gamma_1(\lambda - \delta w_1)} & -(\rho_{1,2}\alpha + \gamma) & \cdots & -(\rho_{1,k}\alpha + \gamma) \\ -(\rho_{2,1}\alpha + \gamma) & \frac{1}{\Gamma_2(\lambda - \delta w_2)} & \cdots & -(\rho_{2,k}\alpha + \gamma) \\ \vdots & \vdots & \ddots & \vdots \\ -(\rho_{k,1}\alpha + \gamma) & -(\rho_{k,2}\alpha + \gamma) & \cdots & \frac{1}{\Gamma_k(\lambda - \delta w_k)} \end{bmatrix}$$
 (6)

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

Main Theorem Universal adjacency matrix Generalized Corona

ii) We define f_i , g_i , and $\Phi(\lambda)$ corresponding to the main eigenvalues of U_i for $1 \le i \le k$. Then the universal spectrum of G is given as below.

- For every eigenvalue μ of U_i with multiplicity $m(\mu)$, which is not a main eigenvalue, $\mu + \delta w_i$ is a universal eigenvalue of G with multiplicity $m(\mu)$.
- For every main eigenvalue μ of U_i with multiplicity m(μ), μ + δw_i is a universal eigenvalue of G with multiplicity m(μ) − 1.

Remaining eigenvalues are the roots of the polynomial Φ(λ).

(日) (同) (三) (三)

Main Theorem Universal adjacency matrix Generalized Corona

Apart from adjacency matrix, we can deduce many results from the previous theorem. So our work can be considered as a generalization of following works.

Generalization

- In [4, Theorem 8], the authors obtained the Laplacian spectra of H-join of any graphs.
- In [23, Theorem 2.4], the authors obtained the characteristic polynomial of Lexicographic product H[G'] and investigated the spectrum in various cases.

(日) (同) (三) (三)

Introduction Generalization of Fiedler's Lemma Cospectral graphs

Main Theorem Universal adjacency matrix Generalized Corona

Cospectral graphs H-generalized join operation constrained by vertex subsets References

Generalization

- The generalized characteristic polynomial of a graph G is introduced in [9], as the bivariate polynomial defined by φ_G(λ, t) = det(λI (A(G) tD(G))) where A(G) and D(G) are the adjacency and the degree matrix associated to the graph G.
- In [8, Theorem 3.1] the authors obtained a generalization of Fiedlers lemma, for the matrices with fixed row sum and as an application, they obtained the generalized characteristic polynomial of H-join of regular graphs.
- In [16] the universal adjacency spectra of the disjoint union of regular graphs is obtained.

(日) (同) (日) (日)

Introduction Generalization of Fiedler's Lemma Cospectral graphs

Main Theorem Universal adjacency matrix Generalized Corona

Cospectral graphs H-generalized join operation constrained by vertex subsets References

Generalized Corona

In [13, Theorem 3.1], the generalized corona product is defined as below and its characteristic polynomial is obtained. We can deduce this result also. This is done by viewing the corona product as the H-join of suitably chosen graphs.

Definition

Let H' be a graph on k vertices. Let G_1, G_2, \ldots, G_k be graphs of order n_1, n_2, \ldots, n_k respectively. The generalized corona product of H' with G_1, G_2, \ldots, G_k , denoted by $H' \circ \Lambda_{i=1}^k G_i$, is obtained by taking one copy of graphs $H', G_1, G_2, \ldots, G_k$, and joining the *i*th vertex of H' to every vertex of G_i .

Main Theorem Universal adjacency matrix Generalized Corona

Generalized Corona as H-join

Let $H = H' \circ K_1$. Let v_{k+i} be the new vertex in H attached with the vertex v_i in the copy of H', for $1 \le i \le k$. Let $\mathcal{F} = \{K_1, K_1, \dots, K_1, G_1, G_2, \dots, G_k\}$. Then we get the following visualization of generalized corona as H-join of graphs in \mathcal{F} .

$$(H' \circ \Lambda_{i=1}^k G_i) = (\bigvee_H \mathcal{F})$$

That is, each v_i is replaced by K_1 and v_{k+i} is replaced by G_i in H, to form the H-join.

(日) (同) (三) (三)

Introduction Generalization of Fiedler's Lemma Cospectral graphs

Main Theorem Universal adjacency matrix Generalized Corona

H-generalized join operation constrained by vertex subsets References

Characteristic polynomial of Generalized Corona

Let H' be a graph with vertex set $V(H') = \{v_1, v_2, \dots, v_k\}$. Let G_1, G_2, \dots, G_k be any graphs. $\rho_{i,j} = 1$ if $v_i v_j \in E(H')$ and 0 otherwise. The characteristic polynomial of the generalized corona product $G = H' \circ \Lambda_{i=1}^k G_i$ is given by

$$\phi_{G}(\lambda) = \left(\Pi_{i=1}^{k} \phi_{G_{i}}(\lambda) \right) \det(\widetilde{A}(H'))$$

where
$$\widetilde{A}(H') = \begin{bmatrix} \lambda - \Gamma_{G_1}(\lambda) & -\rho_{1,2} & \cdots & -\rho_{1,k} \\ -\rho_{2,1} & \lambda - \Gamma_{G_2}(\lambda) & \cdots & -\rho_{2,k} \\ \vdots & \vdots & \ddots & \vdots \\ -\rho_{k,1} & -\rho_{k,2} & \cdots & \lambda - \Gamma_{G_k}(\lambda) \end{bmatrix}$$

<ロ> <同> <同> < 回> < 回>

Cospectral graphs

- Two graphs are said to be cospectral if their (adjacency) spectrum are equal. In general, for any matrix say M(G) for a given graph G, two graphs are said to be M-cospectral if their M-spectrum is equal.
- In [2], the author questioned the existence of non-regular graphs, which are cospectral with respect to the adjacency, the Laplacian, the signless Laplacian, and the normalized Laplacian spectrum simultaneously.
- In [8, Theorem 3.7], the authors affirmatively answered the question by the construction of such graphs using the H-join of regular graphs. We prove that those graphs are U-cospectral too. In particular, those graphs are cospectral with respect to the Seidel spectrum also.

(日) (同) (三) (三)

Cospectral graphs

Let $\mathcal{F} = \mathcal{F}_1 = \{G_1, G_2, \dots, G_k\}$ and $\mathcal{F}_2 = \{G'_1, G'_2, \dots, G'_k\}$ be two families of graphs.

- (i) If G_i and G'_i are cospectral regular graphs on n_i vertices for $1 \le i \le k$, and H is an arbitrary graph on k vertices, then $\bigvee_H \mathcal{F}_1$ and $\bigvee_H \mathcal{F}_2$ are U-cospectral.
- (ii) If H_1 and H_2 are cospectral r_1 -regular graphs on k vertices and every G_i is r_2 -regular on m vertices for $1 \le i \le k$, then $\bigvee_{H_1} \mathcal{F}$ and $\bigvee_{H_2} \mathcal{F}$ are U-cospectral.
- (iii) If H_1 and H_2 are cospectral r_1 -regular graphs on k vertices and, G_i and G'_i are cospectral r_2 -regular graphs on m vertices for $1 \le i \le k$ then $\bigvee_{H_1} \mathcal{F}_1$ and $\bigvee_{H_2} \mathcal{F}_2$ are U-cospectral.

イロト イポト イヨト イヨト 二日

Let *H* be a graph with vertex set $\{v_1, v_2, \ldots, v_k\}$ and let $\mathcal{F} = \{G_1, G_2, \ldots, G_k\}$ be a family of graphs. Now by considering a family of vertex subsets $S = \{S_1, S_2, \ldots, S_k\}$ where $S_i \subset V(G_i)$ for each $1 \leq i \leq k$, a generalization of *H*-join operation, known as *H*-generalized join operation constrained by vertex subsets, $\underset{H,S}{\bigvee} \mathcal{F}$ is introduced in [5] as follows:

(日) (同) (三) (三)

$$V\big(\bigvee_{H,S} \mathcal{F}\big) = \bigcup_{i=1}^{k} V(G_i) \text{ and } E\big(\bigvee_{H,S} \mathcal{F}\big) = \big(\bigcup_{i=1}^{k} E(G_i)\big) \cup \big(\bigcup_{v_i v_j \in E(H)} \{xy : x \in S_i, y \in S_j\}\big).$$

If we take $S_i = V(G_i)$ for each $1 \le i \le k$, then the *H*-generalized join operation $\bigvee_{H,S} \mathcal{F}$ coincides with the *H*-join

operation of the graphs $G_1, G_2 \ldots, G_k$.

Example

Consider the graphs $H = P_3$, $G_1 = P_3$, $G_2 = K_{1,3}$ and $G_3 = K_2 \cup K_1$ as follows.

æ

Example

Consider H and \mathcal{F} as in Example 3. Let $S_1 = \{v_1^{(1)}, v_2^{(1)}\}$, $S_2 = \{v_1^{(2)}, v_2^{(2)}, v_4^{(2)}\}$ and $S_3 = \{v_2^{(3)}, v_3^{(3)}\}$. Then the H-generalized join graph $G=\bigvee \mathcal{F}$ is given as н.s G :

The characteristic vector of a subset

Let G be any graph with vertex set $\{v_1, v_2, \ldots, v_n\}$. For any subset $S \subset V(G)$, the characteristic vector of S, denoted by χ_S , is defined as the 0-1 vector such that i^{th} place of χ_S is 1 if and only if the vertex $v_i \in S$.

By the definition of $\bigvee_{(H,S)} \mathcal{F}$, its adjacency matrix can be given as

$$A(G) = \begin{bmatrix} A_1 & \rho_{1,2}\chi_{S_1} \chi_{S_2}^t & \cdots & \rho_{1,k}\chi_{S_1} \chi_{S_k}^t \\ \rho_{2,1}\chi_{S_2} \chi_{S_1}^t & A_2 & \cdots & \rho_{2,k}\chi_{S_2} \chi_{S_k}^t \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{k,1}\chi_{S_k} \chi_{S_1}^t & \rho_{k,2}\chi_{S_k} \chi_{S_2}^t & \cdots & A_k \end{bmatrix}.$$

(日) (同) (三) (三)

Theorem on H-generalized join

Consider a graph *H* of order *k* and a family of graphs $\mathcal{F} = \{G_1, \ldots, G_k\}$. Consider also a family of vertex subsets $\mathcal{S} = \{S_1, \ldots, S_k\}$, such that $S_i \subset V(G_i)$ for $1 \leq i \leq k$. Let $G = \bigvee_{H,S} \mathcal{F}$. Let n_i and A_i be the number of vertices and the adjacency matrix of the graph G_i respectively for $1 \leq i \leq k$. For $1 \leq i, j \leq k$, let $\rho_{i,j}$ be the scalars defined by $\rho_{i,i} = 1$ if $ij \in E(H)$ and 0 otherwise. Then we have the following.

(日) (同) (三) (三)

Theorem on *H*-generalized join

i) The characteristic polynomial of G is

$$\phi_{G}(\lambda) = \left(\prod_{i=1}^{k} \phi_{i}(\lambda) \Gamma_{i}(\lambda) \right) \det(\widetilde{A}(G))$$

where
$$\widetilde{A}(G) = \begin{bmatrix} \frac{1}{\Gamma_1} & -\rho_{1,2} & \cdots & -\rho_{1,k} \\ -\rho_{2,1} & \frac{1}{\Gamma_2} & \cdots & -\rho_{2,k} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ -\rho_{k,1} & -\rho_{k,2} & \cdots & \frac{1}{\Gamma_k} \end{bmatrix}$$
 (7)

æ

where $\phi_i(\lambda) = \det(\lambda I_{n_i} - A(G_i))$ and $\Gamma_i(\lambda) = \Gamma_{A_i}(\chi_{S_i}; \lambda)$

- ii) Analogous to the Equations (4) and (5), we define f_i, g_i and $\Phi(\lambda)$ corresponding to the χ_{S_i} -main eigenvalues of G_i for $1 \le i \le k$. Then the spectrum of G is given as below.
 - Every eigenvalue μ of A_i with multiplicity m(μ), which is not χ_{Si}-main eigenvalue, is an eigenvalue of G with multiplicity m(μ).
 - Every χ_{Sj}-main eigenvalue μ of A_i with multiplicity m(μ), is an eigenvalue of G with multiplicity m(μ) - 1.
 - Remaining eigenvalues are the roots of the polynomial Φ(λ).

(日) (同) (三) (三)

A Recent work

D. M. Cardoso, H. Gomes, S. J. Pinheiro, The H-join of arbitrary families of graphs, arXiv: arXiv:2101.08383.

M.S. Bartlett, An inverse matrix adjustment arising in discriminant analysis, Ann. Math. Statist., 22 (1951) 107-111.

- S. Butler, A note about cospectral graphs for the adjacency and normalized Laplacian matrices, Linear Multilinear Algebra, 58 (2010) 387-390.
- D.M. Cardoso, I. Gutman, E.A. Martins, M. Robbiano A generalization of Fiedler's lemma and some applications, Linear Multilinear Algebra, 59(8) (2011) 929-942.
- D.M. Cardoso, M.A. de Freitas, E.A. Martins, M. Robbiano, Spectra of graphs obtained by a generalization of the join graph operation, Discrete Math., 313 (2013) 733-741.
- D.M. Cardoso, E.A. Martins, M. Robbiano, O. Rojo Eigenvalues of a H-generalized join graph operation constrained by vertex subsets, Lin. Alg. Appl., 438(8) (2013) 3278-3290.

- D.M. Cardoso, P. Rama, Spectral results on regular graphs with (k,tau)-regular sets, Discrete Math. 307 (2007) 1306-1316.
- D.M. Cardoso, I. Sciriha, C. Zerafa. Main eigenvalues and (k, τ) -regular sets, Lin. Alg. Appl., 432 (2010) 2399-2408.
- Y. Chen, H. Chen, *The characteristic polynomial of a generalized join graph*, Appl. Math. Comput., 348 (2019) 456-464.
- D. Cvetković, M. Doob, H. Sachs, *Spectra of Graphs : Theory and Application*, Johann Ambrosius Barth Verlag, Heidelberg-Leipzig, 1995.
- D. Cvetković, P. Rowlinson, S. Simić, *An Introduction to the Theory of Graph Spectra*, Cambridge University Press, 2010.
- J. Ding, A. Zhou, *Eigenvalues of rank-one updated matrices with some applications*, Applied Math. Letters, 20 (2007) 1223-1226.
- M. Fiedler, *Eigenvalues of nonnegative symmetric matrices*, Lin. Alg. Appl., 9 (1974) 119-142.

- A.R.F. Laali, H.H. Seyyedavadi, D. Kiani, *Spectra of generalized corona of graphs*, Lin. Alg. Appl., 493 (2016) 411-425.
- A. Gerbaud, Spectra of generalized compositions of graphs and hierarchical networks, Discrete Math. 310 (2010) 2824-2830.
- C. Godsil, G. Royle, *Algebraic Graph Theory*, Springer-Verlag, New York, 2001.
- W.H. Haemers, M.R. Oboudi, *Universal spectra of the disjoint union of regular graphs*, Lin. Alg. Appl., 606 (2020) 244-248.
- C. McLeman and E. McNicholas, *Spectra of coronae*, Lin. Alg. Appl., 435 (2011) 998-1007.
- A. Neumaier, Regular sets and quasi-symmetric 2-designs, in: D. Jungnickel, K. Vedder (Eds.), Combinatorial Theory, Springer, Berlin, (1982) 258-275.

• • • • • • • • • • • • •

- M. Neumann, S. Pati, The Laplacian spectra with a tree structure, Linear Multilinear Algebra, 57(3)(2009) 267-291.
- P. Rowlinson, *The main eigenvalues of a graph: A survey*, Appl. Anal. Discrete Math. 1 (2007) 445-471.
- A.J. Schwenk, Computing the characteristic polynomial of a graph, in: R. Bary, F. Harary (Eds.), Graphs Combinatorics, in: Lecture Notes in Mathematics, Springer-Verlag, Berlin, 406 (1974) 153-172.
- D. Stevanovic, *Large sets of long distance equienergetic graphs*, Ars Math. Contemp. 2 (2009), 35-40.
- Z. Wang and D. Wong, *The characteristic polynomial of lexicographic product of graphs*, Lin. Alg. Appl., 541 (2018), 177-184.
- B.-F. Wu, Y.-Y. Lou, C.-X. He, *Signless Laplacian and normalized Laplacian on the H-join operation of graphs*, Discrete Math. Algorithms Appl., 6(3) (2014) 13.1450046.

(日) (同) (三) (

Thank You...

(日) (同) (三) (

B> B