### Seidel spectrum of threshold graphs

Santanu Mandal

#### E-Seminar on Graphs, Matrices and Application

National Institute of Technology Rourkela, Odisha-769008



May 14, 2021

Santanu Mandal ... E-Seminar on Gra Seidel spectrum of threshold graphs

## Introduction

- Attention in threshold graphs gained momentum during last 40 years.
- It has many applications in various field.
- Threshold graphs are a special case of cographs and split graphs.
- The motivation for considering threshold graphs comes from the spectral graph theory.
- An important thing is that-a threshold graph with *n* vertices can always be represented by a finite binary string of length *n*.
- For n ≥ 2 there are 2<sup>n-2</sup> connected threshold graph on n vertices.

The study of threshold graphs was started with the papers by Chvatal and Hammer [1] and Henderson and Zalcstein [2] in 1977.

- The most complete reference on this topic is the book by Mahadeb and Peled [3], and for basic knowledge of spectral graph theory we refer the book by Godsil [13].
- Bapat [5] proved that the number of negative, zero, and positive eigenvalues of a threshold graph can be find out directly from its binary code representation. He also calculated the determinant value of the adjacency matrix of a generalized threshold graph and calculated the inverse of the adjacency matrix of an antiregular graph.
- Sciriha *et al*. [4] explore the adjacency spectrum of antiregular graphs and show common properties of a connected threshold graph.

- Jacobs *et al.* ([6, 7, 8]), focus on eigenvalue location, characteristic polynomial and energy of a threshold graph. They developed an algorithm for computing the characteristic polynomial of a threshold graph. They proved that-a threshold graph has no adjacency eigenvalue in the interval (0, 1).
- Banerjee and Mehatari [9] derived some results on normalized spectrum of a threshold graphs. They characterized all the threshold graphs with at most five distinct adjacency eigenvalue.
- Lazzarin [11] *et al.* proved that no threshold graphs are cospectral with respect to its adjacency matrix.
- We use the concept of evaluating the determinant of a tri diagonal matrix which is given by Mikkawy [14].

## Mathematical Setup

Suppose  $B = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4, \dots, \alpha_n\}$  is a real sequence and  $A_B = (\alpha_{ij})$  is a symmetric matrix whose entries are

$$\alpha_{ij} = \begin{cases} \alpha_i, & \text{for } i > j, \\ \alpha_j, & \text{for } j > i, \\ 0, & \text{otherwise.} \end{cases}$$

$$A_B = \begin{bmatrix} 0 & \alpha_2 & \alpha_3 & \alpha_4 & \cdots & \alpha_n \\ \alpha_2 & 0 & \alpha_3 & \alpha_4 & \cdots & \alpha_n \\ \alpha_3 & \alpha_3 & 0 & \alpha_4 & \cdots & \alpha_n \\ \alpha_4 & \alpha_4 & \alpha_4 & 0 & \cdots & \alpha_n \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \alpha_n & \alpha_n & \alpha_n & \alpha_n & \cdots & 0 \end{bmatrix}$$

The matrix  $A_B$  is called the **threshold matrix** associated with the real sequence B.

#### A $P_4$ , $C_4$ and $2K_2$ free graph is called a *Threshold graph*.

Santanu Mandal ... E-Seminar on Gra Seidel spectrum of threshold graphs

A  $P_4$ ,  $C_4$  and  $2K_2$  free graph is called a *Threshold graph*.

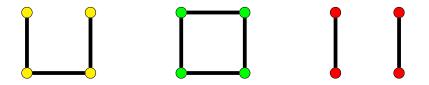
#### A $P_4$ , $C_4$ and $2K_2$ free graph is called a *Threshold graph*.



#### A $P_4$ , $C_4$ and $2K_2$ free graph is called a *Threshold graph*.



#### A $P_4$ , $C_4$ and $2K_2$ free graph is called a *Threshold graph*.



## Seidel matrix

Let  $\Gamma$  be a threshold graph with vertex set  $V = \{v_1, v_2, \dots, v_n\}$  and binary string  $b = \alpha_1 \alpha_2 \alpha_3 \dots \alpha_n$ . Then Clearly  $A_B$  is the adjacency matrix of  $\Gamma$ . The **Seidel matrix** (S) is defined by

$$S = J - I - 2A_B.$$

$$\implies S = \begin{vmatrix} 0 & 1 - 2\alpha_2 & 1 - 2\alpha_3 & \dots & 1 - 2\alpha_n \\ 1 - 2\alpha_2 & 0 & 1 - 2\alpha_3 & \dots & 1 - 2\alpha_n \\ 1 - 2\alpha_3 & 1 - 2\alpha_3 & 0 & \dots & 1 - 2\alpha_n \\ \dots & \dots & \dots & \dots & \dots \\ 1 - 2\alpha_n & 1 - 2\alpha_n & 1 - 2\alpha_n & \dots & 0 \end{vmatrix},$$

Consider  $1 - 2\alpha_i = \beta_i$  for i = 2, 3, ..., n - 1, then S takes the form

$$S = \begin{vmatrix} 0 & \beta_2 & \beta_3 & \dots & \beta_n \\ \beta_2 & 0 & \beta_3 & \dots & \beta_n \\ \dots & \dots & \dots & \dots & \dots \\ \beta_n & \beta_n & \beta_n & \dots & 0 \end{vmatrix},$$
(1)

**Interesting Fact** : Binary Representation of threshold graphs

## **Interesting Fact** : Binary Representation of threshold graphs

âĂć A threshold graph can be obtained from a single vertex by repeated performance of two operations

## **Interesting Fact** : Binary Representation of threshold graphs

âĂć A threshold graph can be obtained from a single vertex by repeated performance of two operations

• Addition of a single vertex.

## **Interesting Fact** : Binary Representation of threshold graphs

âĂć A threshold graph can be obtained from a single vertex by repeated performance of two operations

- Addition of a single vertex.
- Addition of a dominating vertex.

âĂć

## **Interesting Fact** : Binary Representation of threshold graphs

âĂć A threshold graph can be obtained from a single vertex by repeated performance of two operations

- Addition of a single vertex.
- Addition of a dominating vertex.

#### âĂć

Notations:

## **Interesting Fact** : Binary Representation of threshold graphs

âĂć A threshold graph can be obtained from a single vertex by repeated performance of two operations

- Addition of a single vertex.
- Addition of a dominating vertex.

#### âĂć

Notations:

# **Interesting Fact** : Binary Representation of threshold graphs

âĂć A threshold graph can be obtained from a single vertex by repeated performance of two operations

- Addition of a single vertex.
- Addition of a dominating vertex.

#### âĂć

Notations:

• 
$$\alpha_1 = 0, \ \alpha_n = 1.$$

# **Interesting Fact** : Binary Representation of threshold graphs

âĂć A threshold graph can be obtained from a single vertex by repeated performance of two operations

- Addition of a single vertex.
- Addition of a dominating vertex.

#### âĂć

Notations:

• 
$$\alpha_1 = 0, \ \alpha_n = 1.$$

• Set 
$$s = \sum s_i$$
,  $t = \sum t_i$ ,

# **Interesting Fact** : Binary Representation of threshold graphs

âĂć A threshold graph can be obtained from a single vertex by repeated performance of two operations

- Addition of a single vertex.
- Addition of a dominating vertex.

#### âĂć

Notations:

• 
$$\alpha_1 = 0, \ \alpha_n = 1.$$

• Set 
$$s = \sum s_i$$
,  $t = \sum t_i$ ,  
Then  $s + t = n$ .

# **Interesting Fact** : Binary Representation of threshold graphs

âĂć A threshold graph can be obtained from a single vertex by repeated performance of two operations

- Addition of a single vertex.
- Addition of a dominating vertex.

### âĂć

Notations:

• WLOG, we take  $b = \alpha_1 \alpha_2 \alpha_3 \alpha_4 \dots \alpha_n = 0^{s_1} 1^{t_1} 0^{s_2} 1^{t_2} \dots 0^{s_k} 1^{t_k}$ .

• 
$$\alpha_1 = 0, \ \alpha_n = 1.$$

• Set 
$$s = \sum s_i$$
,  $t = \sum t_i$ ,  
Then  $s + t = n$ .

• Spec(W)=spectrum of a matrix W.

 $b = 0011100011 = 0^2 1^3 0^3 1^2$ 



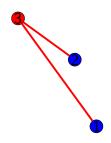
#### <□▶ <□▶ < □▶ < □▶ < □▶ = □ の < ⊙





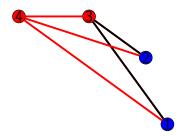


 $b = 0011100011 = 0^2 1^3 0^3 1^2$ 

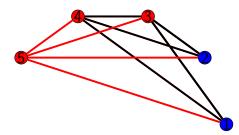


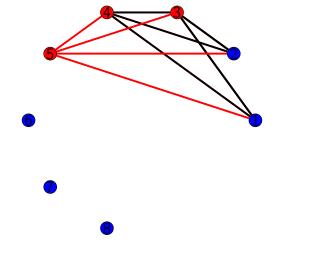
(ロト (個) (目) (目) (日) (の)

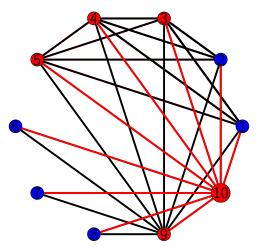
 $b = 0011100011 = 0^2 1^3 0^3 1^2$ 



▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへで







The adjacency matrix A and the Seidel matrix S of a threshold graph  $\Gamma$  with binary string  $b = 0^{s_1} 1^{t_1} 0^{s_2} 1^{t_2} \cdots 0^{s_k} 1^{t_k}$  are the square matrices of size n, given by

$$A = \begin{bmatrix} O_{s_1} & J_{s_1 \times t_1} & O_{s_1 \times s_2} & J_{s_1 \times t_2} & \dots & J_{s_1 \times t_k} \\ J_{t_1 \times s_1} & (J - I)_{t_1} & O_{t_1 \times s_2} & J_{t_1 \times t_2} & \dots & J_{t_1 \times t_k} \\ O_{s_2 \times s_1} & O_{s_2 \times t_2} & O_{s_2} & J_{s_2 \times t_2} & \dots & J_{s_2 \times t_k} \\ J_{t_2 \times s_1} & J_{t_2 \times t_1} & J_{t_2 \times s_2} & (J - I)_{t_2} & \dots & J_{t_2 \times t_k} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ J_{t_k \times s_1} & J_{t_k \times t_1} & J_{t_k \times s_2} & J_{t_k \times t_2} & \dots & (J - I)_{t_k} \end{bmatrix},$$

$$S = \begin{bmatrix} (J-l)_{s_1} & -J_{s_1 \times t_1} & J_{s_1 \times s_2} & -J_{s_1 \times t_2} & \dots & -J_{s_1 \times t_k} \\ -J_{t_1 \times s_1} & (l-J)_{t_1} & J_{t_1 \times s_2} & -J_{t_1 \times t_2} & \dots & -J_{t_1 \times t_k} \\ J_{s_2 \times s_1} & J_{s_2 \times t_1} & (J-l)_{s_2} & -J_{s_2 \times t_2} & \dots & -J_{s_2 \times t_k} \\ -J_{t_2 \times s_1} & -J_{t_2 \times t_1} & -J_{t_2 \times s_2} & (l-J)_{t_2} & \dots & -J_{t_2 \times t_k} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ -J_{t_k \times s_1} & -J_{t_k \times t_1} & -J_{t_k \times s_2} & -J_{t_k \times t_2} & \dots & (l-J)_{t_k} \end{bmatrix}.$$
(2)

where,  $O_{m \times n}$ ,  $J_{m \times n}$  are all zero block matrix and all 1 block matrix respectively of size mn.

Let  $\pi = \{C_1, C_2, \dots, C_{2k}\}$  be an equitable partition of the vertex set of  $\Gamma$ , such that,  $C_1$  contains first  $s_1$  vertices,  $C_2$  contains next  $t_1$ vertices and so on. Then the adjacency quotient matrix( $Q_A$ ) and the Seidel quotient matrix ( $Q_S$ ) corresponding to the same equitable partition  $\pi$  are the square matrices of size 2k, given by

$$Q_{\mathcal{A}} = egin{bmatrix} 0 & t_1 & 0 & t_2 & \ldots & t_k \ s_1 & t_1 - 1 & 0 & t_2 & \ldots & t_k \ 0 & 0 & 0 & t_2 & \ldots & t_k \ \ldots & \ldots & \ldots & & & \ s_1 & t_1 & s_2 & t_2 & \ldots & t_k - 1 \end{bmatrix},$$

$$Q_{S} = egin{bmatrix} s_{1} - 1 & -t_{1} & s_{2} & -t_{2} & s_{3} & \dots & -t_{k} \ -s_{1} & -(t_{1} - 1) & s_{2} & -t_{2} & s_{3} & \dots & -t_{k} \ s_{1} & t_{1} & s_{2} - 1 & -t_{2} & s_{3} & \dots & -t_{k} \ -s_{1} & -t_{1} - & -s_{2} & -(t_{2} - 1) & s_{3} & \dots & -t_{k} \ \dots & \dots & \dots & \dots & \dots & \dots \ -s_{1} & -t_{1} & -s_{2} & -t_{2} & -s_{3} & \dots & -(t_{k} - 1) \end{bmatrix}$$

May 14, 2021 13 / 36

Image: A matrix and a matrix

æ

.

### Partition representation

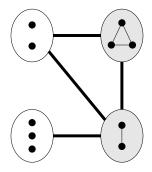


Figure: *b* = 0011100011

## Contribution

We prove some important properties of  $Q_S$  and derive the formula for the multiplicity of the Seidel eigenvalues  $\pm 1$ . We characterized all the threshold graphs which have at most five distinct Seidel eigenvalues. Finally, it is shown that the cospectrality may be occured if Seidel matrix is considered instead of adjacency matrix. Few results are given below.

#### Theorem

 $Q_S$  is diagonalizable.

Sketch of proof: Consider  $D = diag(s_1, t_1, s_2, t_2, \ldots, s_k, t_k)$ . Then  $Q_S$  is similar to  $D^{\frac{1}{2}}Q_S D^{-\frac{1}{2}}$ , a symmetric matrix.

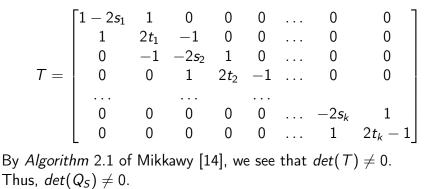
#### Theorem

 $Q_A$  and  $Q_S$  are non singular.

Sketch of proof: By *Theorem* 2.3 of Banerjee and Mehatari [9], Santanu Mandal ... E-Seminar on Gra Seidel spectrum of threshold graphs May 14, 2021 15 / 36

## $Q_A$ and $Q_S$ are non-singular

we have  $det(Q_A) = (-1)^k s_1 t_1 s_2 t_2 \dots s_k t_k$ .  $Q_S$  is row equivalent to the following tridiagonal matrix.



May 14, 2021 16 / 36

#### Theorem

Let  $b = \alpha_1 \alpha_2 \dots \alpha_n$  be the binary string of a threshold graph and let  $b_r = \alpha_1 \alpha_2 \alpha_3 \dots \alpha_r$ . Suppose  $\Phi_r(x)$  denote the characteristic polynomial of Seidel matrix of the threshold graph with binary string  $b_r$ , then the characteristic polynomial,  $\Phi_n(x)$  of the Seidel matrix S given by (1) is obtained by the following recurrence formula

$$\Phi_r(x) = 2(x + \beta_{r-1})\Phi_{r-1}(x) - 2(x + \beta_{r-1})^2\Phi_{r-2}(x),$$

where  $\Phi_1(x) = x$  and  $\Phi_2(x) = x^2 - 1$ .

Sketch of the proof: Here

$$\Phi_r(x) = \begin{vmatrix} x & -\beta_2 & -\beta_3 & \dots & -\beta_r \\ -\beta_2 & x & -\beta_3 & \dots & -\beta_r \\ -\beta_3 & -\beta_3 & x & \dots & -\beta_r \\ \dots & \dots & \dots & \dots & \dots \\ -\beta_r & -\beta_r & -\beta_r & \dots & x \end{vmatrix}.$$

We consider two cases. Case I.  $\beta_r = \beta_{r-1}$ . Case II.  $\beta_r = -\beta_{r-1}$ .

# Spectrum of $Q_S$

#### Theorem

$$-1 \notin Spec(Q_S)$$
 if  $t_k > 1$ .

Sketch of proof: Let us assume that  $Q_S$  has the eigenvalue -1. Then there exists a non zero vector  $X = (x_1 \ x_2 \ x_3 \ \dots \ x_{2k})^t$  such that  $Q_S X = -X$ . Solving the system  $Q_S X = -X$ , we have  $x_i = 0$  for all  $i = 1, 2, 3, \dots, 2k$ , if  $t_k \neq 1$ .

#### Corollary

If  $t_k = 1$ , then -1 is a simple eigenvalue of  $Q_S$ .

Sketch of proof: Here  $X = (0 \dots 0 \ 1 \ s_k)$  is an eigenvector corresponding to the eigenvalue -1.

# Spectrum of $Q_S$

#### Theorem

 $1 \notin Spec(Q_S)$  if  $s_1 > 1$ .

Sketch of proof: Let us assume that  $Q_S$  has the eigenvalue 1. Then there exists a non zero vector  $X = (x_1 \ x_2 \ x_3 \ \dots \ x_{2k})^t$  such that  $Q_S X = X$ . Solving the system  $Q_S X = X$ , we have  $x_i = 0$  for all  $i = 1, 2, 3, \dots, 2k$ , if  $s_1 \neq 1$ .

#### Corollary

If  $s_1 = 1$ , then 1 is a simple eigenvalue of  $Q_S$ .

Sketch of proof: Here  $X = (t_1 - 1 \ 0 \ \dots \ 0)^t$  is an eigenvector corresponding to the eigenvalue 1.

・ロト ・ 一日 ・ ・ ヨ ト ・ 日 ・ うのつ

## $Q_S$ has simple eigenvalue

#### Theorem

All eigenvalues of  $Q_S$  are simple.

Sketch of proof: Suppose  $\lambda$  is an eigenvalue of  $Q_{S}$ . Let  $X = (x_1 \ x_2 \ x_3 \ \dots \ x_{2k})^t$  be an eigenvector corresponding to  $\lambda$  such that  $x_l \neq 0$  and  $x_m = 0$  for all m < l, where l is minimal. Then  $l = 2p, 1 \le p \le k$ . We already proved that  $\lambda = \pm 1$  is a simple eigenvalue. Now we prove the theorem for  $\lambda \neq \pm 1$ . Then from the relation  $Q_{S}X = \lambda X$ , we have  $x_{l+i} = c_{l+i}x_{l}$ , where  $c_{l+i}$  are the constants depend on  $\lambda$ . Thus we can construct X as  $X = x_l(0 \ 0 \ 0 \ \dots \ 0 \ 1 \ c_{l+1} \ c_{l+2} \ c_{l+3} \ \dots \ c_{2k})^t$ . Now if  $X' = (x'_1 \ x'_2 \ x'_3 \ \dots \ x'_{2k})$  be the another eigenvector corresponding to  $\lambda$ , then we see that X' is a constant multiple of X. Hence the geometric multiplicity of  $\lambda$  is one. Again  $Q_5$  is diagonalizable. Hence algebraic multiplicity of  $\lambda$  is also one.

1.  $Q_S$  is diagonalizable.

A B A A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

æ

- 1.  $Q_S$  is diagonalizable.
- $2. SP = PQ_S.$

Image: A matrix of the second seco

글 🕨 🛛 글

- 1.  $Q_S$  is diagonalizable.
- $2. SP = PQ_S.$
- 3. Every eigenvalue of  $Q_S$  is also an eigenvalue of S.

э

- 1.  $Q_S$  is diagonalizable.
- $2. SP = PQ_S.$
- 3. Every eigenvalue of  $Q_S$  is also an eigenvalue of S.
- 4. 0 is not an eigenvalue of  $Q_S$ .

- 1.  $Q_S$  is diagonalizable.
- 2.  $SP = PQ_S$ .
- 3. Every eigenvalue of  $Q_S$  is also an eigenvalue of S.
- 4. 0 is not an eigenvalue of  $Q_5$ .
- 5.  $\pm 1 \notin Spec(Q_S)$  if  $s_1 > 1$ , and  $t_k > 1$ .

- 1.  $Q_S$  is diagonalizable.
- $2. SP = PQ_S.$
- 3. Every eigenvalue of  $Q_S$  is also an eigenvalue of S.
- 4. 0 is not an eigenvalue of  $Q_S$ .
- 5.  $\pm 1 \notin Spec(Q_S)$  if  $s_1 > 1$ , and  $t_k > 1$ .
- 6. Eigenvalues of  $Q_S$  are simple.

- 1.  $Q_S$  is diagonalizable.
- 2.  $SP = PQ_S$ .
- 3. Every eigenvalue of  $Q_S$  is also an eigenvalue of S.
- 4. 0 is not an eigenvalue of  $Q_S$ .
- 5.  $\pm 1 \notin Spec(Q_S)$  if  $s_1 > 1$ , and  $t_k > 1$ .
- 6. Eigenvalues of  $Q_S$  are simple.
- 7. Eigenvalues of  $Q_S$  are real.

#### Theorem

Let  $n_{-1}(S)$  denotes the multiplicity of the eigenvalue -1 of S. Then

$$n_{-1}(S) = \begin{cases} \sum s_i - k, & \text{for } t_k > 1, \\ \sum s_i - k + 1, & \text{for } t_k = 1. \end{cases}$$

Sketch of proof: If  $t_k > 1$ , then  $-1 \notin Spec(Q_S)$ . Therefore the multiplicity of the eigenvalue -1 in S is exactly  $\sum(s_i - 1)$ . If  $t_k = 1$ , then  $-1 \in Spec(Q_S)$  and it is simple. Thus,

$$n_{-1}(S)=\sum s_i-k+1.$$

#### Theorem

Let  $n_{+1}(S)$  denotes the multiplicity of the eigenvalue +1 of S. Then

$$n_{+1}(S) = \begin{cases} \sum t_i - k, \ \text{for } s_1 > 1, \\ \sum t_i - k + 1, \ \text{for } s_1 = 1. \end{cases}$$

Sketch of proof: If we take  $s_1 > 1$ . Then  $1 \notin Spec(Q_S)$ . Therefore the multiplicity of the eigenvalue 1 in S is exactly  $\sum (t_i - 1)$ . If we take  $s_1 = 1$ . Then  $1 \in Spec(Q_S)$  and it is simple. Thus,

$$n_{+1}(S)=\sum t_i-k+1.$$

### Corollary

Let  $\Gamma$  be a threshold graph with binary string **b**. Then  $\Gamma$  has two distinct Seidel eigenvalues if and only if one of the following conditions hold.

(i) 
$$\boldsymbol{b} = 0^{s_1} 1, \ s_1 \ge 1,$$
  
(ii)  $\boldsymbol{b} = 01^{t_1}, \ t_1 \ge 1.$ 

Sketch of the proof: (i) Here  $\Gamma$  is a threshold graph with binary string  $\mathbf{b} = 0^{s_1} 1$  where  $s_1 \ge 1$ . Infact, this is a star graph  $K_{1,s_1}$ . It has two distinct Seidel eigenvalues  $s_1$  with multiplicity 1 and -1 with multiplicity  $s_1$ .

(ii) Here  $\Gamma$  is a threshold graph with binary string  $\mathbf{b} = 01^{t_1}$  where  $t_1 \ge 1$ . Clearly this is a complete graph  $K_{t_1+1}$ . It has two distinct Seidel eigenvalues  $-t_1$  with multiplicity 1 and 1 with multiplicity  $t_1 \ge \infty$ .

## Corollary

Let  $\Gamma$  be a threshold graph with binary string **b**. Then  $\Gamma$  has four distinct Seidel eigenvalues if and only if one of the following conditions hold.

(i)  $\boldsymbol{b} = 0^{s_1} 1^{t_1}, \ s_1 > 1, \ t_1 > 1,$ (ii)  $\boldsymbol{b} = 01^{t_1} 0^{s_2} 1.$ 

Sketch of the proof: Let  $b = 0^{s_1} 1^{t_1} 0^{s_2} \dots 0^{s_k} 1^{t_k}$  be the binary string of the threshold graph  $\Gamma$ . Here  $k \leq 2$ . **Case I.** k = 1. Then  $b = 0^{s_1} 1^{t_1}$ . If  $s_1 > 1$ ,  $t_1 > 1$ , then the quotient matrix  $Q_S$  has two distinct eigenvalues other that  $\pm 1$ . Therefore Shas four distinct eigenvalues -1 with multiplicity  $s_1 - 1$  and 1 with multiplicity  $t_1 - 1$ , and another two simple eigenvalues come from  $Q_S$ .

**Case II.** Let k = 2 then  $b = 0^{s_1}1^{t_1}0^{s_2}1^{t_2}$ . Now if  $\Gamma$  has 4 distinct eigenvalues, then S can not have eigenvalue  $\pm 1$  outside of the spectrum of  $Q_S$ . Therefore 4 distinct eigenvalues is possible only if  $s_1 = 1 = t_2$ , and in that case eigenvalues of S are  $1^{t_1}$ ,  $(-1)^{s_2}$  and  $\frac{(s_2-t_1)\pm\sqrt{(s_2-t_1)^2+4(1+t_1+s_2+2t_1s_2)}}{2}$ . Conversely if  $b = 01^{t_1}0^{s_2}1$  or  $b = 0^{s_1}1^{t_1}$ ,  $s_1 > 1$ ,  $t_1 > 1$ , then S has four distinct eigenvalues.

### Corollary

No threshold graph can have three distinct Seidel eigenvalues.

### Corollary

Let  $\Gamma$  be a threshold graph with binary string **b**. Then  $\Gamma$  has five distinct Seidel eigenvalues if and only if  $\mathbf{b} = 01^{t_1}0^{s_2}1^{t_2}$  with  $t_2 > 1$  or  $\mathbf{b} = 0^{s_1}1^{t_1}0^{s_2}1$  with  $s_1 > 1$ .

Sketch of the proof: Let  $b = 0^{s_1}1^{t_1}0^{s_2}1^{t_2}...0^{s_k}1^{t_k}$ . Then k must be equal to 2. Then binary string of  $\Gamma$  is  $b = 0^{s_1}1^{t_1}0^{s_2}1^{t_2}$ . Then  $Q_S$  has four distinct eigenvalues. Now S will have five distinct Seidel eigenvalues if  $\pm 1$  are eigenvalues of S and exactly one of  $\pm 1$  belongs to spectrum of  $Q_S$ .

**Case I.**  $s_1 = 1, t_2 > 1$ . Then +1 belongs to the spectrum of  $Q_S$ , where as -1 is not an eigenvalue of  $Q_S$ . Therefore spectrum of S is  $\{-1^{s_2-1}, 1^{t_1+t_2}, \alpha_1, \beta_1, \gamma_1\}$ , where  $\alpha_1, \beta_1$ , and  $\gamma_1$  are the distinct eigenvalues (other than 1) of  $Q_S$ . **Case II.**  $s_1 > 1, t_2 = 1$ . Then -1 belongs to the spectrum of  $Q_S$ , where as 1 is not an eigenvalue of  $Q_S$ . Therefore spectrum of S is  $\{-1^{s_1+s_2}, 1^{t_1-1}, \alpha_2, \beta_2, \gamma_2\}$ , where  $\alpha_2, \beta_2$ , and  $\gamma_2$  are the distinct

eigenvalues (other than -1) of  $Q_S$ .

#### Theorem

Let us consider two threshold graphs  $\Gamma_1$  and  $\Gamma_2$  on n vertices with the binary string  $b_1 = 0^{n-2}1^2$  and  $b_2 = 010^{n-3}1$  respectively. Then  $\Gamma_1$  and  $\Gamma_2$  are always **cospestral** on Seidel matrix.

Sketch of proof: The characterastic equation of  $Q_S$  for the binary strings  $b_1$  and  $b_2$  are respectively

$$x^2 + (4 - n)x + (7 - 3n) = 0,$$

$$(x^2 - 1)[x^2 + (4 - n)x + (7 - 3n)] = 0.$$

Thus both the strings have same Seidel spectrum  $\{-1^{n-3}, 1, \alpha, \beta\}$ , where  $\alpha, \beta$  are the roots of the equation  $x^2 + (4 - n)x + (7 - 3n) = 0$ .

## Example of cospectral threshold graphs

### Example

If we take n = 4 in previous theorem, we get threshold graphs  $\Gamma_1$  and  $\Gamma_2$  with binary string  $b_1 = 0011$  and  $b_2 = 0101$  respectively. In that case,  $\Gamma_1$  and  $\Gamma_2$  are not isomorphic (see Figure 2) but they both have eigenvalues  $\pm 1, \pm \sqrt{5}$ .

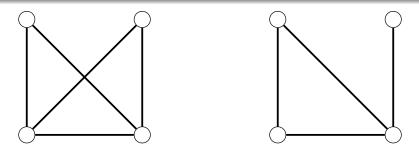


Figure: Non isomorphic *cospestral* threshold graphs with 4 vertices.

May 14, 2021

31 / 36

- V. Chvatal, P. L. Hammer Aggregations of inequalities in Integer Programming. *Annals of Discrete Math. 1 (1977) 145-162.*
- P. B. Henderson, Y. Zalcstein A graph-theoretic characterization of synchronizing primitives *SIAM J. Comput., 6 (1977) 88-108.*
- N. V. R. Mahadev, U. N. Peled Threshold graphs and Related Topics. . Annals of Discrete Math. 58 (1995), Elsevier, Amsterdam.
- I. Sciriha, S. Farrugia On the spectrum of threshold graphs. *ISRN Discrete Math. (2011) doi:10.5402/2011108509.*

R. B. Bapat On the adjacency matrix of a threshold graph. Linear Algebra Appl. 439 (2013) 3008-3015.

- D. P. Jacobs, V. Trevisan, F. Tura Eigenvalue location in threshold graphs. *Linear Algebra Appl. 439 (2013) 2762-2773.*
- D. P. Jacobs, V. Trevisan, F. Tura Computing the characteristic polynomial of threshold graphs. *Journal of Graph Algorith. Appl. 18 (2014) 709–719.*
- D.P. Jacobs, V. Tervisan, F. Tura Eigenvalues and energy in threshold graphs. Linear Algebra Appl. 465 (2015) 412-425.

- A. Banerjee, R. Mehatari On the normalized spectrum of threshold graphs. *Linear Algebra Appl. 530 (2017) 288-304.*
- L. Lu, Q. X. Huang, Z. Z. Lou On the distance spectra of threshold graphs Linear Algebra Appl. 553 (2018) 223-237.
- J. Lazzarin, O. F. Marquez, F. C. Tura No threshold graphs are cospectral. *Linear Algebra Appl. 560 (2019) 133-145.*

E. Ghorbani Eigenvalue-free interval for threshold graphs Linear Algebra Appl. 583 (2019) 300-305.

- C. D. Godsil, G. Royale Algebraic Graph Theory. Springer-Verlag, New York, (2001)
- Moawwad E.A. El-Mikkawy A fast algorithm for evaluating nth order tri-diagonal determinants. J. Computational and Appl. Math, 166 (2004) 581-584.

#### That's all.

æ

< ≣⇒

A B > A
 B > A
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C