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Introduction 1.1 Preliminaries

1.1 Preliminaries

Notations in graph theory
Kn - The complete graph on n vertices

Kp,q - The complete bipartite graph whose partite sets having p and q vertices

Cn - Cycle of length n

Pn - Path on n vertices

G - The complement graph of a graph G

NG (v) - Set of all neighbors of v in a graph G

Notations in Matrix theory
Jn×m - The n ×m matrix in which all the entries are 1

σ(M) - The spectrum of a matrix M

Rn×m(s) := {[mij ] ∈ Mn×m(C)|
m∑
j=1

mij = s for i = 1, 2, . . . , n}

Cn×m(c) := {[mij ] ∈ Mn×m(C)
∣∣ n∑
i=1

mij = c for j = 1, 2, . . . ,m}

RCn×m(s, c) := Rn×m(s) ∩ Cn×m(c).
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Introduction 1.1 Preliminaries

Matrices associated to graphs

Let G be a graph with V (G ) = {v1, v2, . . . , vn} and E (G ) = {e1, e2, . . . , em}.
The adjacency matrix of G , denoted by A(G ) = [aij ], is the n × n matrix
defined as aij = 1, if i ̸= j and vi and vj are adjacent in G ; 0, otherwise.

The vertex-edge incidence matrix of G is the n×m matrix B(G ) = [bij ] is
defined as bij = 1, if the vertex vi is incident with the edge ej ; 0, otherwise.

The degree matrix of G , denoted by D(G ), is the diagonal matrix
diag(d1, d2, . . . , dn), where di denotes the degree of vi in G .

The Laplacian matrix of G is L(G ) = D(G )− A(G ).

The signless Laplacian matrix of G is Q(G ) = D(G ) + A(G ).

The normalized Laplacian matrix of G is
L̂(G ) = D(G )−1/2L(G )D(G )−1/2.
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Introduction 1.1 Preliminaries

The multi set of eigenvalues of A(G), L(G), Q(G) and L̂(G) are said to be the
A−spectrum, L−spectrum, Q−spectrum and L̂-spectrum of G , respectively.

The characteristic polynomial of A(G), L(G), Q(G) and L̂(G) are denoted by
PG (x), LG (x), QG (x) and L̂G (x), respectively.

The A−spectrum, L−spectrum and Q−spectrum of G are denoted by

λ1(G) ≥ λ2(G) ≥ . . . ≥ λn(G), (1.1)

0 = µ1(G) ≤ µ2(G) ≤ . . . ≤ µn(G), (1.2)

ν1(G) ≥ ν2(G) ≥ . . . ≥ νn(G), (1.3)

respectively.

In 1995, Cvetković et al. [16] introduced the generalized characteristic
polynomial ϕG (x , β) of G , which is defined as

ϕG (x , β) = |xIn − (A(G)− βD(G))|.

Notice that PG (x), LG (x) and QG (x) are equal to ϕG (x , 0), (−1)nϕG (−x , 1) and
ϕG (x ,−1), respectively.
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Introduction 1.1 Preliminaries

Cospectral graphs:

In 2003, Van Dam and Haemers [58] asked “Which graphs are determined by
their spectra ?”.

Two graphs are said to be A−cospectral (resp. L−cospectral,
Q−cospectral, L̂-cospectral) if they have same A−spectrum (resp.
L−spectrum, Q−spectrum, L̂-spectrum).

What is the significance of constructing the cospectral graphs?

Several structural properties are same for cospectral graphs.

In 2010, Butler [8] asked the following question: Is there an example of two
non-regular graphs which are simultaneously A-cospectral, L-cospectral,
Q-cospectral and L̂-cospectral ?
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What is the need of graph operations?

A natural question arise is “How far the spectrum of a given
graph can be expressed in terms the spectrum of some other
graphs ?”.

In this point of view, to construct graphs from the given graphs,
several graph operations were defined in literature such as the union,
the complement, the subdivision, the Cartesian product, the
Kronecker product, the NEPS, the corona, the join, deletion of a
vertex, insertion/deletion of an edge, etc.
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Some unary graph operations in the literature

⋆ L(G ) - The line graph of G

⋆ S(G ) - The subdivision graph of G

⋆ R(G ) - The R−graph of G

⋆ Q(G ) - The Q− graph of G

⋆ T (G ) - The total graph of G

⋆ C (G ) - The central graph of G

⋆ QT (G ) - The quasitotal graph of G

⋆ Du(G ) - The duplication graph of G
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In 2017, M. Somodi et al. [55] defined the following graph operation which
generalizes the constructions of the middle, total, and quasitotal graphs:

Overlay of G and G ′

Let G and G ′ be two graphs having n vertices with same vertex labeling
{v1, v2, . . . , vn}. Then the overlay of G and G ′, denoted by G ⋉G ′ is the
graph obtained by taking one copy of Q(G ), and joining the vertices vi
and vj of G if and only if vi and vj are adjacent in G ′.
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Join of graphs

The join of two graphs G and H is the graph obtained by taking one
copy of G and H, and joining all the vertices of G to all the vertices in H.

Variants of join of graphs

Year Authors Definitions
2012 Indulal S-vertex join and S-edge join of graphs

Schwenk H-generalized join of graphs
H-generalized join of graphs constrained
by vertex subsets

2015 Liu et.al R-vertex join and R-edge join of graphs

Varghese et.al
DG -vertex join and DG -add vertex join
of graph

2017 Lu et.al
Subdivision vertex-vertex join and subdi-
vision vertex-edge join of graphs

Tian et. al
subdivision double join, R-graph double
join, Q-graph double join, total double
join of graphs

2018 S. Paul
Generalized subdivision vertex join of
graphs
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Corona of graphs

In 1970, the corona of two graphs was first introduced by Frucht and
Harary to construct a graph whose automorphism group is the wreath
product of the automorphism group of their components [22].

corona of G and H

Let G and H be two graphs with |V (G )| = n. The corona of G and H is
the graph obtained by taking one copy of G and n copies of H, and joining
the i−th vertex of G to all the vertices in the i−th copy of H for
i = 1, 2, . . . , n.

In 2007, Barik et al. [4] determined the A-spectrum (resp. the
L-spectrum) of the corona of arbitrary graph G and a regular graph H
(resp. for any graph G and H), in terms of the A-spectrum (resp. the
L-spectrum) of G and H.
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Variants of corona of graphs:

Year Authors Definitions
2010 Y. Hou and W- C. Shiu Edge corona
2011 G. Indulal Neighbourhood corona

2013 X. Liu and P. Lu
Subdivision vertex corona and subdivision edge
corona of two graphs

P.L. Lu and Y.F. Miao
Subdivision vertex neighbourhood corona and subdi-
vision edge neighbourhood corona of two graphs

2014 P. L. Lu and Y. F. Miao
Corona-vertex of subdivision graph and corona-edge
of subdivision graph of two graphs

2015 J. Lan et al.
R−vertex corona, the R−edge corona, the R−vertex
neighbourhood corona and the R−edge neighbour-
hood corona of two graphs

C. Adiga and B.R. Rakshith
C−vertex neighbourhood corona, the N−vertex
corona, C−edge corona, N−edge corona of two
graphs

2016 X. Q. Zhu et al. Total corona

S. Barik and G. Sahoo

Subdivision double corona of graphs, R-graph double
corona of graphs, Q-graph double corona of graphs,
total graph double corona of graph, subdivision dou-
ble neighbourhood corona, R-graph double neigh-
bourhood corona, Q-graph double neighbourhood
corona, total graph double neighbourhood corona of
graphs
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2017 C. Adiga et al.
Extended neighborhood corona, extended corona of
graphs

2018 C. Adiga et al.
The duplication vertex corona, the duplication edge
corona of graphs

W. Wen et al.

Subdivision vertex-edge neighbourhood vertex-
corona (short for SVEV- corona), subdivision
vertex-edge neighbourhood edge-corona (short for
SVEE- corona)

Q. Liu
Generalized R-vertex corona, generalized R-edge
corona of graphs
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(H1,H2)-merged subdivision graph of a graph

First we define the ternary graph operation as follows:

Definition 2.1.

Let G be a graph with V (G) = {v1, v2, . . . , vn} and E(G) = {e1, e2, . . . , em}. Let H1 and H2

be two graphs with V (H1) = {u1, u2, . . . , un} and V (H2) = {w1, w2, . . . , wm}. Then the

(H1,H2)-merged subdivision graph of G , denoted by [S(G)]H1
H2

, is the graph obtained by taking

one copy of S(G), and joining the vertices vi and vj if and only if the vertices ui and uj are
adjacent in H1 for i , j = 1, 2, . . . , n, and joining the new vertices which lie on the edges et and
es if and only if wt and ws are adjacent in H2 for t, s = 1, 2, . . . ,m.

Notation 2.1.

We denote the graphs [S(G)]Kn
H and [S(G)]H

Km
simply by [S(G)]H and [S(G)]H , respectively.
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Figure 1: Examples for (H1,H2)-merged subdivision graph of a graph G

The construction used in Definition 2.1 generalizes many graph constructions:

S(G) ∼= [S(G)]Kn

Km
, R(G) ∼= [S(G)]G and Ct(G) ∼= [S(G)]G . Also notice that the graph

[S(G)]HL(G)
∼= G ⋉ H. Consequently, Q(G) ∼= [S(G)]L(G), T (G) ∼= [S(G)]GL(G),

QT (G) ∼= [S(G)]GL(G) and the complete Q-graph of G is isomorphic to [S(G)]Kn
L(G).
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Some of the special cases of [S(G)]H2
H1

enable us to define some interesting unary graph
operations:

Definition 2.2.

Let G be a graph with V (G) = {v1, v2, . . . , vn}.
(1) The point complete subdivision graph of G is the graph obtained by taking one

copy of S(G), and joining all the vertices vi , vj ∈ V (G).

(2) The Q-complemented graph of G is the graph obtained by taking one copy of
S(G), and joining the new vertices which lie on the non-adjacent edges of G .

(3) The total complemented graph of G is the graph obtained by taking one copy of
R(G), and joining the new vertices which lie on the non-adjacent edges of G .

(4) The quasi-total complemented graph of G is the graph obtained by taking one
copy of Q-complemented graph of G , and joining all the vertices vi , vj ∈ V (G)
which are not adjacent in G .

(5) The complete Q-complemented graph of G is the graph obtained by taking one
copy of Q-complemented graph of G , and joining all the vertices of vi , vj ∈ V (G).

(6) The complete subdivision graph of G is the graph obtained by taking one copy
of S(G), and joining all the new vertices which lie on the edges of G .
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(7) The complete R-graph of G is the graph obtained by taking one copy of R(G),
and joining all the new vertices which lie on the edges of G .

(8) The complete central graph of G is the graph obtained by taking one copy of
central graph of G , and joining all the new vertices which lie on the edges of G .

(9) The fully complete subdivision graph of G is the graph obtained by taking one
copy of S(G), and joining all the vertices of G and joining all the new vertices
which lie on the edges of G .

Notice that the graphs mentioned in Definitions 2.2(1)-(9) are isomorphic to [S(G)]Kn ,

[S(G)]L(G), [S(G)]GL(G)
, [S(G)]GL(G)

, [S(G)]Kn

L(G)
, [S(G)]Km , [S(G)]GKm

, [S(G)]GKm
,

[S(G)]Kn
Km

, respectively. The structures of these graphs for G = C4 are shown in
Figures 2(a)-(i), respectively. In these figures, the vertices colored with white represent
the new vertices of S(G).

Notation 2.2.
Let U1 be the collection of all unary graph operations defined in Definition 2.2 and the
subdivision graph, the R-graph, the Q-graph, the total graph, the central graph, the
quasi-total graph, and the complete Q-graph.
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Figure 2: (a) The point complete subdivision graph of C4, (b) The Q-complemented
graph of C4, (c) The total complemented graph of C4, (d) The quasi-total
complemented graph of C4, (e) The complete Q-complemented graph of C4, (f) The
complete subdivision graph of C4, (g) The complete R-graph of C4, (h) The complete
central graph of C4, (i) The fully complete subdivision graph of C4
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Co-eigenvalues of matrices

Co-eigenvalues of matrices

Definition 2.3.
Let A1,A2, . . . ,Am be square matrices of order n with entries from R. Then
λ1, λ2, . . . , λm ∈ R are said to be co-eigenvalues of A1,A2, . . . ,Am, if there exists a
vector X ∈ Rn such that AiX = λiX for i = 1, 2, . . . ,m.

The following are some easy observations which will be used later.

Observation 2.1.

(1) If A1,A2 ∈ Mn(R), then for each eigenvalue λ1 of A1, there need not exist an
eigenvalue λ2 of A2 such that λ1, λ2 are co-eigenvalues of A1,A2.

(2) If A1,A2, . . . ,Am are symmetric and commutes with each other, then for each
eigenvalue λ1 of A1, Proposition 1.3 ensures the existence of λ2, λ3, . . . , λm such
that they are co-eigenvalues of A1,A2, . . . ,Am.

(3) If λ is an eigenvalue of a matrix A ∈ Mn(R), then λ, 1 are co-eigenvalues of A, In.
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Co-eigenvalues of matrices

Continued...
(4) Let A ∈ Mn(R) and f (x) ∈ R[x ]. If λ is an eigenvalue of A, then λ, f (λ) are

co-eigenvalues of A, f (A).

(5) If G is an r -regular graph with n vertices, then λi (G), µi (G), νi (G) are
co-eigenvalues of A(G), L(G), Q(G) for i = 1, 2, . . . , n.

(6) If f (x), g(x) ∈ R[x ] and λ1, λ2 are co-eigenvalues of A1,A2, then f (λ1), g(λ2) are
co-eigenvalues of f (A1), g(A2). In particular, if G is an r -regular graph,
M ∈ Mn(R) and λ(G), λ(M) are co-eigenvalues of A(G), M, then µ(G), λ(M) are
co-eigenvalues of L(G), M, where µ(G) = r − λ(G); ν(G), λ(M) are
co-eigenvalues of Q(G),M, where ν(G) = r + λ(G).

(7) If f (x), g(x) ∈ R[x ] and λ1, λ2 are co-eigenvalues of A1,A2, then λ1, f (λ1) + g(λ2)
are co-eigenvalues of A1, f (A1) + g(A2).

(8) If λ1, λ2 are co-eigenvalues of A1,A2 ∈ Mn(R), then λ1 + λ2 is an eigenvalue of
A1 + A2; λ1λ2 is an eigenvalue of A1A2.

Lemma 3.1

If M ∈ RCn×n(s, s), then s, n are co-eigenvalues of M, Jn. Also, λ, 0 are co-eigenvalues
of M, Jn, where λ is an eigenvalue of M with an eigenvector X such that X , Jn×1 are
linearly independent.
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Co-eigenvalues of matrices

Corollary 2.1.

(1) If G is a graph with n vertices, then the pair 0, n, and for each i = 2, 3, . . . , n the
pairs µi (G), 0 are co-eigenvalues of L(G), Jn.

(2) If G is r -regular, then the pair r , n, and for each i = 2, 3, . . . , n, the pairs λi (G), 0,
are co-eigenvalues of A(G), Jn.

(3) If G is r -regular, then the pair 2r , n, and for each i = 2, 3, . . . , n, the pairs νi (G),
0 are co-eigenvalues of Q(G), Jn.

Proposition 2.1.

Let G be a spanning r-regular subgraph of Kp,p. Then we have the following:

(1) The co-eigenvalues of A(G) and A(Kp,p) are: r , p; −r ,−p and λi (G), 0 for
i = 2, 3, . . . , 2p − 1;

(2) The co-eigenvalues of L(G) and L(Kp,p) are: 0, 0; 2r , 2p and µi (G), p for
i = 2, 3, . . . , 2p − 1;

(3) The co-eigenvalues of Q(G) and Q(Kp,p) are: 2r , 2p; 0, 0 and νi (G), p for
i = 2, 3, . . . , 2p − 1,

where λi (G), µi (G) and νi (G) for i = 1, 2, . . . , 2p are as in (1.1)–(1.3), respectively.
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Spectra of (H1,H2)-merged subdivision graph of a graph

Spectra of (H1,H2)-merged subdivision graph of a graph

Now we proceed to determine the A-spectra, the L-spectra, the Q-spectra and the
L̂-spectra of [S(G)]H1

H2
for some families of G , H1 and H2, and the graphs constructed by

the unary graph operations in U1.
It can be seen that

A
(
[S(G)]H1

H2

)
=

[
A(H1) B(G)
B(G)T A(H2)

]
, (2.1)

L
(
[S(G)]H1

H2

)
=

[
L(H1) + D(G) −B(G)

−B(G)T L(H2) + 2Im

]
, (2.2)

Q
(
[S(G)]H1

H2

)
=

[
Q(H1) + D(G) B(G)

B(G)T Q(H2) + 2Im

]
. (2.3)

If G is r -regular (r > 1) and Hi is ri -regular for i = 1, 2, then

L̂
(
[S(G)]H1

H2

)
=


1

r1 + r
[L(H1) + D(G)]

1√
(r1 + r)(r2 + 2)

B(G)

1√
(r1 + r)(r2 + 2)

B(G)T
1

r2 + 2
[L(H2) + 2Im]

 . (2.4)
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Spectra of (H1,H2)-merged subdivision graph of a graph

In the rest of the slides, we assume that

θi =

{
1 for i = 1;

0 for i = 2, 3, . . . , n.

Proposition 2.2.

Let A ∈ Mn(R), B ∈ RCn×m(r , c), t1, t2, t3 ∈ R and c ̸= 0. Then the characteristic polynomial
of the matrix

M =

[
A B
BT t1Im + t2Jm + t3BTB

]
(2.5)

is

(x − t1)
m−n ×

∣∣∣∣{(x − t1)In − t3BB
T −

t2

c
rJn

}
(xIn − A)− BBT

∣∣∣∣ .
Moreover, if A and BBT commutes with each other and m ≥ n, then the spectrum of M
contains

(i) t1 with multiplicity m − n;

(ii)
1

2

(
αi + λi (A)±

√
(αi − λi (A))

2 + 4λi (BBT )

)
,

where αi = t1 +
1

c
θi t2nr + t3λi (BB

T );

λi (A), λi (BB
T ) are co-eigenvalues of A, BBT for i = 1, 2, . . . , n.
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Spectra of (H1,H2)-merged subdivision graph of a graph

Corollary 2.2.

Let G be an r-regular graph (r ≥ 2) with n vertices and m (= 1
2
nr) edges. Let Hi be an

ri -regular graph, where H1 has n vertices, which commutes with G, and
H2 ∈ {Km,Km,L(G),L(G)}. Then the A-spectrum, the L-spectrum, the Q-spectrum

and the L̂-spectrum of [S(G)]H1
H2

are

(i) t1 with multiplicity m − n;

(ii)
1

2

(
αi + βi ±

√
(αi − βi )

2 + 4γ2νi (G)

)
,

where αi = t1 + 2γ1 + θimt2 + t3γ2νi (G),

γ1 =

{
0 for A-spectrum of [S(G)]H1

H2
;

1 for L-spectrum ,Q-spectrum and L̂-spectrum of [S(G)]H1
H2
;

γ2 =

1 for A-specrurm, L-spectrum,Q-spectrum of [S(G)]H1
H2
;

1

(r1 + r)(r2 + 2)
for L̂-spectrum of [S(G)]H1

H2
;

βi =


λi (H1) for A-spectrum of [S(G)]H1

H2
;

µi (H1) + r for L-spectrum of [S(G)]H1
H2
;

νi (H1) + r for Q-spectrum of [S(G)]H1
H2
;

1

r1 + r
(µi (H1) + r) for L̂-spectrum of [S(G)]H1

H2
,
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Spectra of (H1,H2)-merged subdivision graph of a graph

with νi (G), λi (H1), µi (H1) and νi (H1) are co-eigenvalues of Q(G), A(H1), L(H1) and Q(H1)
for i = 1, 2, . . . , n and t1, t2, t3 are such that

t1Im + t2Jm + t3B(G)TB(G) =



A(H2) for A-spectrum of [S(G)]H1
H2

;

L(H2) for L-spectrum of [S(G)]H1
H2

;

Q(H2) for Q-spectrum of [S(G)]H1
H2

;
1

r2 + 2
L(H2) for L̂-spectrum of [S(G)]H1

H2
,

which can be obtained from Table 4.

S. No Matrices
1. A(G) = −rIn + B(G)B(G)T

2. L(G) = 2rIn − B(G)B(G)T

3. Q(G) = (r − 1)In + Jn − B(G)B(G)T

4. A(G) = In + Jn − B(G)B(G)T

5. L(G) = (m − 2r)In − Jn + B(G)B(G)T

6. Q(G) = (m − 2r + 2)Im − Jm + B(G)B(G)T

7. A(L(G)) = −2Im + B(G)TB(G)

8. L(L(G)) = 2rIm − B(G)TB(G)

9. Q(L(G)) = (2r − 4)Im + B(G)TB(G)

10. A(L(G)) = Im + Jm − B(G)TB(G)

11. L(L(G)) = (m − 2r)Im − Jm + B(G)TB(G)
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Spectra of (H1,H2)-merged subdivision graph of a graph

12. Q(L(G)) = (m − 2r + 2)Im − Jm + B(G)TB(G)
13. A(Km) = Jm − Im
14. L(Km) = mIm − Jm
15. Q(Km) = (m − 2)Im + Jm

Table 4: Various matrices of the graphs expressed in terms of their incidence
matrix, the identity matrix and the all-ones matrix
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Spectra of (H1,H2)-merged subdivision graph of a graph

Corollary 2.3.

Let G be an r-regular graph (r ≥ 2) with n vertices and m (= 1
2
nr) edges. Let Hi be an

ri -regular graph. Let H1 ∈ { Kn, Kn,G ,G} and H2 ∈ {Km,Km,L(G),L(G)}. Then the

A-spectrum, the L-spectrum, the Q-spectrum and the L̂-spectrum of [S(G)]H1
H2

can be obtained

by taking βi = s1 + rγ1 + θins2 + s3νi (G) for i = 1, 2, . . . , n in Corollary 2.2, where s1, s2, s3 are
such that

s1In + s2Jn + s3B(G)B(G)T =



A(H1) for the A-spectrum of [S(G)]H1
H2

;

L(H1) for the L-spectrum of [S(G)]H1
H2

;

Q(H1) for the Q-spectrum of [S(G)]H1
H2

;
1

r1 + r
L(H1) for the L̂-spectrum of [S(G)]H1

H2
,

which can be obtained from Table 4.

Corollary 2.4.

If G and G ′ are regular cospectral graphs, then U(G) and U(G ′) are simultaneously

A-cospectral, L-cospectral, Q-cospectral and L̂-cospectral for U ∈ U1.

Remark 2.1.
Corollary 2.4 gives an affirmative answer to the question raised by Butler in ([8]).
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(H1,H2)-merged subdivision graph of Kp,p

Corollary 2.5.

Let H be a spanning r1-regular subgraph of Kp,p and H2 ∈ {Kp2 , Kp2 , L(Kp,p), L(Kp,p)}. Then
we have the following.

(1) The A-spectrum, the L-spectrum, the Q-spectrum and the L̂-spectrum of [S(Kp,p)]HH2
can

be obtained by taking m = p2, n = 2p, r = p,

λi (H1) =


r1 for i = 1;

−r1 for i = 2p;

λi (H) for i = 2, 3, . . . , 2p − 1,

µi (H1) =


0 for i = 1;

2r1 for i = 2p;

µi (H) for i = 2, 3, . . . , 2p − 1,

νi (H1) =


2r1 for i = 1;

0 for i = 2p;

νi (H) for i = 2, 3, . . . , 2p − 1,

νi (Kp,p) =


2p for i = 1;

0 for i = 2p;

p for i = 2, 3, . . . , 2p − 1,
in Corollary 2.2.
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(2) The A-spectrum, the L-spectrum, the Q-spectrum and the L̂-spectrum of [S(H)]
Kp,p

K
p2

can

be obtained by replacing G , H1, r by H, Kp,p , r1, respectively, and substituting

λi (H1) =


p for i = 1;

−p for i = 2p;

0 for i = 2, 3, . . . , 2p − 1,

µi (H1) =


0 for i = 1;

2p for i = 2p;

p for i = 2, 3, . . . , 2p − 1,

νi (H1) =


2p for i = 1;

0 for i = 2p;

p for i = 2, 3, . . . , 2p − 1,

νi (G) =


2r1 for i = 1;

r1 for i = 2p;

νi (H) for i = 2, 3, . . . , 2p − 1,
in Corollary 2.2.

(H1,H2)-merged subdivision graph of K1,m

Theorem 2.1.

If H is a graph with m vertices, then we have the following.

(1) If H is r-regular, then the A-spectrum of [S(K1,m)]H is

0,
1

2

(
r ±

√
r2 + 4m + 4

)
,
1

2

(
λi (H)±

√
λi (H)2 + 4

)
for i = 2, 3, . . . ,m.
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(2) The L-spectrum of [S(K1,m)]H is

0,
1

2

(
m + 3±

√
(m − 1)2 + 4

)
,
1

2

(
µi (H) + 3±

√
[µi (H) + 1]2 + 4

)
for i = 2, 3, . . . ,m.

(3) If H is r -regular (r > 1), then the Q-spectrum of [S(K1,m)]H is

(i)
1

2

(
νi (H) + 3±

√
[νi (H) + 1]2 + 4

)
for i = 2, 3, . . . ,m,

(ii) the roots of the polynomial
x3 − (m + 2r + 3)x2 +(2mr + 2m + 2r + 1)x −2rm.

(4) If H is r -regular (r > 1), then the L̂-spectrum of [S(K1,m)]H is

0, 1,
r + 4

r + 2
,
2r − λi (H) + 4±

√
λi (H)2 + 4r + 8

2(r + 2)
for i = 2, 3, . . . ,m.
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(H1,H2)-merged subdivision graph of Pn

Theorem 2.2.
([7, Theorem 3.2]) Let n ≥ 3 and let p(x) be a polynomial of degree less than n. Then
p(A(Pn)) is the adjacency matrix of a graph if and only if p(x) = PP2i+1(x), for some i,
0 ≤ i ≤ ⌊ n

2
⌋ − 1.

Corollary 2.6.

Let n ≥ 3 be an integer. If H is a graph with A(H) = PP2i+1(A(Pn−1)), for some i, with
0 ≤ i ≤ ⌊ n−1

2
⌋ − 1, then the A-spectrum of [S(Pn)]H is

0,
cj ±

√
c2j + 8

(
cos πj

n
+ 1
)

2
,

where cj =
i∑

k=0

(−1)k
(
2i + 1− k

k

)(
2 cos

πj

n

)2(i−k)+1

and j = 1, 2, . . . , n − 1.

30 / 83



Spectra of (H1,H2)-merged subdivision graph of a graph

Q-complemented graph of a graph

Theorem 2.3.

Let G be a graph with n vertices and m edges. Then the characteristic polynomial of the
adjacency matrix of the Q-complemented graph of G is

(−1)n(x − 1)m
(
1−

x

1− x
ΓL(G)

(
x2 + x − 2

1− x

))
QG (−x).

Corollary 2.7.

Let G be a graph with n vertices and m edges whose line graph is r-regular (r ≥ 1). Then the
A-spectrum of the Q-complemented graph of G is

1m−1,−νi (G),
1

2

(
m − r − 1±

√
(m − r − 1)2 + 4r + 8

)
for i = 2, 3, . . . , n.
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Corollary 2.8.
The A-spectrum of the Q-complemented graph of Kp,q is

0, 1pq−1, (−p)q−1, (−q)p−1,
1

2

(
pq − p − q + 1±

√
(pq − p − q + 1)2 + 4(p + q)

)
.

Complete subdivision graph of a graph

Theorem 2.4.

Let G be a graph with n vertices and m edges. Then the characteristic polynomial of
the adjacency matrix of the complete subdivision graph of G is

(x + 1)m−n
(
1− xΓL(G)(x

2 + x − 2)
)
QG (x

2 + x).

Corollary 2.9.

(1) The A-spectrum of the complete subdivision graph of tK1,2 (t ≥ 1) is

0t ,

(
−1±

√
5

2

)t

,

(
−1±

√
13

2

)t−1

,
1

2

(
2t − 1±

√
(2t − 1)2 + 12

)
.
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(2) Let G be a graph with n vertices and m edges whose line graph is r -regular
(r ≥ 2). Then the A-spectrum of the complete subdivision graph of G is

(−1)m−n,
1

2

(
m − 1±

√
(m − 1)2 + 4r + 8

)
,
1

2

(
−1±

√
4νi (G) + 1

)
for i = 2, 3, . . . , n.

Corollary 2.10.

Let (p, q) ̸= (1, 2), (2, 1). Then the A-spectrum of the complete subdivision graph of
Kp,q is

0, (−1)α,

(
−1±

√
4p + 1

2

)q−1

,

(
−1±

√
4q + 1

2

)p−1

,
1

2

(
β ±

√
β2 + 4(p + q)

)
,

where α = pq − p − q + 1; β = pq − 1.
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M-join of graphs

In 1969, Hedetniemi [26] introduced the following generalization of the join of two
graphs, and studied its several graph theoretical properties.

Definition 3.1.
([26]) For given graphs G and H, and a binary relation π ⊆ V (G)× V (H), the π-graph
of G and H is the graph whose vertex set is V (G) ∪ V (H) and the edge set is
E(G) ∪ E(H) ∪ π.

Notice that the binary relation π can be viewed as a matrix M = [mij ], where mij = 1 or
0, if the i-th vertex of G and the j-th vertex of H are related or not, respectively. So, we
restate Definition 3.1 by using M as follows and call that graph as the M-join of G and
H.

Definition 3.2.
Let G and H be graphs with V (G) = {u1, u2, . . . , un} and V (H) = {v1, v2, . . . , vm} and
let M be a 0− 1 matrix of size n ×m. Then the M-join of G and H is the graph,
denoted by G ∨M H and is obtained by taking one copy of G and H, and joining the
vertices ui and vj if and only if the (i , j)-th entry of M is 1 for i = 1, 2, . . . , n;
j = 1, 2, . . . ,m.
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Example 4.1
Consider the graphs G and H as shown in Figure 3. Let π = {(u2, v1),
(u2, v2), (u2, v4), (u3, v1), (u4, v1), (u4, v2), (u4, v4)}. Consequently π can be viewed as the
matrix

M =


0 0 0 0
1 1 0 1
1 0 0 0
1 1 0 1
0 0 0 0

 .

Then G ∨M H is as shown in Figure 3.

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

G H G ∨M H

bu1

u2

u3

u4

u5 v1

v2

v3

v4

Figure 3: Example for M-join of two graphs
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Next, we extend this definition for k graphs by using a sequence of matrices.

Definition 3.3.
Let Hk = (H1,H2, . . . ,Hk) be a sequence of graphs with |V (Hi )| = ni for i = 1, 2, . . . , k
and let M = (M12, M13, . . . , M1k , M23, M24, . . . , M2k , . . . , M(k−1)k), where Mij is a
0− 1 matrix of size ni × nj . Then the M-join of the graphs in Hk , denoted by∨

M Hk , is the graph
k⋃

i,j=1,
i<j

(
Hi ∨Mij Hj

)
.

Notice that any given graph G can be viewed as a M-join of Hk , where Hk = (H1, H2,
. . . , Hk) is a sequence of k pairwise, vertex disjoint induced subgraphs of G and
V (Hi ) = {ui1, ui2, . . . , uini } for i = 1, 2, . . . , k such that

⋃k
i=1 V (Hi ) = V (G) and M =

(M12, M13, . . . , M1k , M23, M24, . . . , M2k , . . . , M(k−1)k) with Mij = [m
(ij)
rs ]ni×nj , where

m(ij)
rs =

{
1 if uir and ujs are adjacenct in G ;

0 otherwise

for r = 1, 2, . . . , ni ; s = 1, 2, . . . , nj ; i , j = 1, 2, . . . , k and i < j . Consequently, the
M-join of graphs generalize all the variants of join of graphs.
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Example 4.3
Let H1,H2,H3 be the graphs as shown in Figure 4 and let

M12 =

1 1 1 0
1 0 0 0
0 1 1 1
0 1 0 0

 ,M13 =

1 0 0
0 0 1
1 0 0
0 1 0

 ,M23 =

0 0 1
0 1 1
1 0 0
0 1 1

 .

Let H3 = (H1,H2,H3) and M = (M12,M13,M23). Then the M-join of H3 is shown in
Figure 4.

b

b

b

b

b b

b
b

b

b

b

u1

u2

u3

u4

v1

v2

v3

v4

w1

w2

w3

u1

u2

u3

u4

v1

v2

v3

v4 w1

w2

w3

b

b

b

b

b

b

b

b b

b

b

H1 H2 H3 ∨
M Hk

Figure 4: Example for M-join of graphs
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Unary graph operations as M-join of two graphs
As particular cases of the M-join of two graphs, we obtain some existing and new unary
graph operations, which are described here. Let G be a graph with n vertices.

S. No Description Name of the unary graph operations

1. G ∨In Kn C -graph of G [1]

2. G ∨In G Mirror graph of G [43]

3. G ∨In G V -complemented neighbourhood graph of G

4. G ∨In Kn C -complete graph of G

5. G ∨Jn−In Kn VC -graph of G

6. G ∨Jn−In G VC -neighbourhood graph of G

7. G ∨Jn−In G VC -complemented neighbourhood graph of G

8. G ∨Jn−In Kn VC -complete graph of G

9. G ∨Jn Kn Join graph of G

10. G ∨Jn G Join neighbourhood graph of G

11. G ∨Jn G Join complemented neighbourhood graph of G

12. G ∨Jn Kn Join complete graph of G

13. G ∨A(G) Kn N-graph of G [1]

14. G ∨A(G) G N-neighbourhood graph of G

15. G ∨A(G) G N-complemented neighbourhood graph of G

16. G ∨A(G) Kn N-complete graph of G

17. G ∨A(G)+In
Kn N-graph of G

18. G ∨A(G)+In
G N-neighbourhood graph of G

19. G ∨A(G)+In
G N-complemented neighbourhood graph of G

20. G ∨A(G)+In
Kn N-complete graph of G

21. G ∨
A(G)

Kn NC -graph of G

22. G ∨
A(G)

G NC -neighbourhood graph of G
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23. G ∨
A(G)

G NC -complemented neighbourhood graph of G

24. G ∨
A(G)

Kn NC -complete graph of G

25. G ∨
A(G)+In

Kn NC -graph of G

26. G ∨
A(G)+In

G NC -neighbourhood graph of G

27. G ∨
A(G)+In

G NC -complemented neighbourhood graph of G

28. G ∨
A(G)+In

Kn NC -complete graph of G

29. G ∨In Kn C -complement graph of G

30. G ∨In G Mirror-complement graph of G

31. G ∨In Kn C -complete-complement graph of G

32. G ∨Jn−In Kn VC -complement graph of G

33. G ∨Jn−In G VC -neighbourhood-complement graph of G

34. G ∨Jn−In Kn VC -complete-complement graph of G

35. G ∨Jn Kn Join-complement graph of G

36. G ∨Jn G Join neighbourhood-complement graph of G

37. G ∨Jn Kn Join complete-complement graph of G

38. G ∨A(G) Kn N-complement graph of G

39. G ∨A(G) G N-neighbourhood-complement graph of G

40. G ∨A(G) Kn N-complete-complement graph of G

41. G ∨A(G)+In
Kn N-complement graph of G

42. G ∨A(G)+In
G N-neighbourhood-complement graph of G

43. G ∨A(G)+In
Kn N-complete-complement graph of G

44. G ∨
A(G)

Kn NC -complete-complement graph of G

45. G ∨
A(G)

G NC -neighbourhood-complement graph of G

46. G ∨
A(G)

Kn NC -complement graph of G
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47. G ∨
A(G)+In

Kn NC -complement graph of G

48. G ∨
A(G)+In

G NC -neighbourhood-complement graph of G

49. G ∨
A(G)+In

Kn NC -complete-complement graph of G

50. Kn ∨A(G) Kn Duplicate graph of G [53]

51. Kn ∨A(G) Kn Duplicate complete graph of G

52. Kn ∨A(G) Kn Fully complete duplicate graph of G

53. Kn ∨A(G)+In
Kn DN-graph of G

54. Kn ∨A(G)+In
Kn DN-complete graph of G

55. Kn ∨A(G)+In
Kn Fully complete DN-graph of G

56. Kn ∨
A(G)

Kn Complemented duplicate graph of G

57. Kn ∨
A(G)

Kn Complemented duplicate complete graph of G

58. Kn ∨
A(G)

Kn Fully complete complemented duplicate graph of G

59. Kn ∨
A(G)+In

Kn Closed duplicate graph of G

60. Kn ∨
A(G)+In

Kn Closed duplicate complete graph of G

61. Kn ∨
A(G)+In

Kn Fully complete closed duplicate graph of G

Table 6: Some (existing and new) unary graph operations defined using M-join of
two graphs
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S. No Description Name of the unary graph operation

1. Kn ∨Jn×m−B(G) Km DEC -graph of G

2. G ∨Jn×m−B(G) Km EC -graph of G

3. G ∨Jn×m−B(G) Km Complemented EC -graph of G

4. Kn ∨Jn×m−B(G) Km Point complete DEC -graph of G

5. Kn ∨Jn×m−B(G) L(G) Q-DEC -graph of G

6. G ∨Jn×m−B(G) L(G) Total DEC -graph of G

7. G ∨Jn×m−B(G) L(G) Central DEC -graph of G

8. Kn ∨Jn×m−B(G) L(G) Complete Q − DEC -graph of G

9. Kn ∨Jn×m−B(G) L(G) Q-complemented DEC -graph of G

10. G ∨Jn×m−B(G) L(G) Total complemented graph of G

11. G ∨Jn×m−B(G) L(G) Double complemented total DEC graph of G

12. Kn ∨Jn×m−B(G) L(G) Complete Q-complemented DEC -graph of G

13. Kn ∨Jn×m−B(G) Km Complete DEC -graph of G

14. G ∨Jn×m−B(G) Km Complete EC -graph of G

15. G ∨Jn×m−B(G) Km Complemented EC -graph of G

16. Kn ∨Jn×m−B(G) Km Fully complete DEC -graph of G

Table 7: Some new unary graph operations defined using M-join of two graphs
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Notation 3.1.

(1) Let U2 and U3 be the set of all unary graph operations mentioned in Table 6 and 7,
respectively.

1 Let U := U1 ∪ U2 ∪ U3.

(2) The new vertices of U(G) are denoted by I (G) for U ∈ U .

Definition 3.4.
Let G be a regular graph with n vertices and m edges.

(1) Let U ∈ U1. Then U(G) = H1 ∨B(G) H2, where H1 ∈ {G ,G ,Kn,K n} and

H2 ∈ {L(G),L(G),Km,Km}. So, by using Table 4, we can write
A(H1) = bIn + b′Jn + b′′B(G)B(G)T and A(H2) = cIm + c ′Jm + c ′′B(G)TB(G).
Then we say that, the sequence (b, b′, b′′, c, c ′, c ′′) of scalars as the scalars
corresponding to U in U1 or the sequence of scalars corresponding to A(U(G))
for U ∈ U1.
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(2) Let U ∈ U2. Then U(G) = H1 ∨M H2, where H1,H2 ∈ {G ,G ,Kn,Kn} and
M ∈ {In,A(G),A(G) + In,A(G),A(G) + In,A(Kn), Jn, 0}. So, by using Table 4, we can
write A(H1) = b1In + b′1Jn + b′′1 B(G)B(G)T ; M = b2In+ b′2Jn+ b′′2 B(G)B(G)T and

A(H2) = b3In+ b′3Jn + b′′3 B(G)B(G)T . Then we say that, the sequence
(b1, b′1, b

′′
1 , b2, b

′
2, b

′′
2 , b3, b

′
3, b

′′
3 ) of scalars as the scalars corresponding to U in U2 or the

sequence of scalars corresponding to A(U(G)) for U ∈ U2.

(3) Let U ∈ U3. Then U(G) = H1 ∨Jn×m−B(G) H2, where H1 ∈ {G ,G ,Kn,Kn} and

H2 ∈ {L(G),L(G),Km,Km}. So, by using Table 4, we can write
A(H1) = bIn + b′Jn + b′′B(G)B(G)T and A(H2) = cIm + c ′Jm + c ′′B(G)TB(G). Then
we say that, the sequence (b, b′, b′′, c, c ′, c ′′) of scalars as the scalars corresponding to U
in U3 or the sequence of scalars corresponding to A(U(G)) for U ∈ U3.

Similarly, we can define the sequence of scalars corresponding to L(U(G)), Q(U(G)) for
U ∈ U .

In the rest of the slides we assume the following, for a given graph G :

α =

{
1 for the A-spectrum and the Q-spectrum of G ;

−1 for the L-spectrum of G ;

ρ =

{
0 for the A-spectrum of G ;

1 for the L-spectrum and the Q-spectrum of G

and θt =

{
1 for t = 1;

0 for t = 2, 3, . . . , n.

43 / 83



M-join of graphs Unary graph operations as M-join of two graphs

Next, we deduce the spectra of the graphs constructed by the unary graph operations in U .

Theorem 3.1.

Let G be an r-regular graph (r ≥ 2) with n vertices and m(= 1
2
nr) edges. Then we have the

following.

(1) If U ∈ U1, then the A-spectrum, the L-spectrum and the Q-spectrum of U(G) are

(i) b2 + 2ρ with multiplicity m − n;

(ii)
1

2

(
α
(t)
1 + α

(t)
2 ±

√(
α
(t)
1 − α

(t)
2

)2
− 4νt(G)

)
for t = 1, 2, . . . , n,

where α
(t)
1 = b1 + rρ+ θtnb′1 + b′′1 νt(G); α

(t)
2 b2 + 2ρ+ θtmb′2 + b′′2 νt(G) for

t = 1, 2, . . . , n; (b1, b′1, b
′′
1 , b2, b

′
2, b

′′
2 ) is the sequence of scalars corresponding to

A(U(G)), L(U(G)) and Q(U(G)) in U1 for A-spectrum, the L-spectrum and the the
Q-spectrum of U(G), respectively.

(2) If U ∈ U2, then the A-spectrum, the L-spectrum and the Q-spectrum of U(G) are

1

2

(
α
(t)
1 + α

(t)
2 ±

√(
α
(t)
1 − α

(t)
2

)2
− 4

(
α
(t)
3

)2)
for t = 1, 2, . . . , n,

where α
(t)
i = bi + ρ(b3 + nb′3 + 2rb′′3 ) + θtnb′i + b′′i νt(G) for i = 1, 2, 3,

(b1, b′1, b
′′
1 , b2, b

′
2, b

′′
2 , b3, b

′
3, b

′′
3 ) is the sequence of scalars corresponding to A(U(G)),

L(U(G)) and Q(U(G)) in U2 for the A-spectrum, the L-spectrum and the Q-spectrum of
U(G), respectively.
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(3) If U ∈ U3, then the A-spectrum, the L-spectrum and the Q-spectrum of U(G) are

(i) b2 + ρ(n − 2) with multiplicity m − n;

(ii) 1
2

(
α
(t)
1 + α

(t)
2 ±

√(
α
(t)
1 − α

(t)
2

)2
− 4α

(t)
3

)
for t = 1, 2, . . . , n,

where α
(t)
1 = b1 + ρ(m − r) + θtnb

′
1 + b′′

1 νt(G)

α
(t)
2 = b2 + ρ(n − 2) + θtmb′

2 + b′′
2 νt(G) α

(t)
3 = θt(mn − nr − 2m) + νt(G)

for t = 1, 2, . . . , n; (b1, b
′
1, b

′′
1 , b2, b

′
2, b

′′
2 ) is the sequence of scalars

corresponding to A(U(G)), L(U(G)) and Q(U(G)) in U3 for the A-spectrum,
the L-spectrum and the Q-spectrum of U(G), respectively.

As a consequence of Theorem 3.1, we obtain the following result.

Corollary 3.1.

Let G and G ′ be two regular cospectral graphs and U ∈ U . Then the graphs U(G) and
U(G ′) are simultaneously A-cospectral, L-cospectral and Q-cospectral.
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Spectra of M-join of graphs

Now we study various spectra of the M-join of some special graphs. It can be seen that

A

(∨
M

Hk

)
=


A(H1) M12 · · · M1k

MT
12 A(H2) · · · M2k

...
...

. . .
...

MT
1k MT

2k · · · A(Hk)

 .

Theorem 3.2.

Let Hk = (H1, H2, . . . , Hk) be a sequence of pairwise commuting regular graphs each
having n vertices and let M = (M12, M13, . . . , M1k , M23, M24, . . . , M2k , . . . , M(k−1)k)
be a sequence of symmetric pairwise commuting matrices such that each Mij ∈
RCn×n(mij , cij) commutes with A(Ht) for i , j , t = 1, 2, . . . , k and i < j . Then the
A-spectrum, the L-spectrum and the Q-spectrum of the M-join of Hk are

n∑
t=1

σ(At),
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where

At =


λt(M11) + ρd1 αλt(M12) · · · αλt(M1k)

αλt(M12) λt(M22) + ρd2 · · · αλt(M2k)
...

...
. . .

...
αλt(M1k) αλt(M2k) · · · λt(Mkk) + ρdk



for t = 1, 2, . . . , n, with Mii =


A(Hi ) for the A-spectrum of

∨
M Hk ;

L(Hi ) for the L-spectrum of
∨

M Hk ;

Q(Hi ) for the Q-spectrum of
∨

M Hk ,

di =



k∑
j=2

m1j for i = 1;

i−1∑
i=1

cji +
k∑

j=i+1

mij for i = 2, 3, . . . , k − 1;

k−1∑
j=1

cjk for i = k,

λt(Mij)s are co-eigenvalues of Mijs for i , j = 1, 2, . . . , k; i ≤ j .
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Corollary 3.2.

Let Hi and H ′
i be regular commuting graphs for i = 1, 2, . . . , k. Let Hk = (H1, H2, . . . ,

Hk), H′
k = (H ′

1, H
′
2, . . . , H

′
k) be sequence of pairwise commuting regular graphs each

having n vertices and let M = (M12, M13, . . . , M1k , M23, M24, . . . , M2k , . . . , M(k−1)k)
be a sequence of symmetric pairwise commuting 0− 1 matrices such that each
Mij ∈ RCn×n(mij , cij). If Mij , A(Ht), A(H

′
t ) are cospectral for i , j , t = 1, 2, . . . , k and

i < j , then the M-join of Hk and the M-join of H′
k are simultaneously A-cospectral,

L-cospectral and Q-cospectral.
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Corollary 3.3.
Let Hk = (H1, H2, . . . , Hk ) be a sequence of graphs each having n vertices and let
M ∈ RCn×n(m, c) be a 0− 1 symmetric matrix which commutes with A(Hi ) for i = 1, 2, . . . , k.
If M = (M12, M13, . . . , M1k , M23, M24, . . . , M2k , . . . , M(k−1)k ) is a sequence of 0− 1
matrices, where Mij = M for i , j = 1, 2, . . . , k; i < j . Then the characteristic polynomials of the
adjacency, the Laplacian and the signless Laplacian matrices of

∨
M Hk are

n∏
t=1


{

k∏
i=1

(x − λ
(t)
i +mt)

}
−mt


k∑

i=1

 k∏
j=1,
j ̸=i

(x − λ
(t)
j +mt)



 ,

with λ
(t)
i =


λt(Hi ) for the characteristic polynomial of A

(∨
M Hk

)
;

µt(Hi ) + di for the characteristic polynomial of L
(∨

M Hk

)
;

νt(Hi ) + di for the characteristic polynomial of Q
(∨

M Hk

)
,

mt = αλt(M);
di = (i − 1)c + (k − i)m for i = 1, 2, . . . , k; t = 1, 2, . . . , n,
λt(M), λt(H1), λt(H2), . . . , λt(Hk ) are co-eigenvalues of M,A(H1),A(H2), . . . ,A(Hk );
λt(M), µt(H1), µt(H2), . . . , µt(Hk ) are co-eigenvalues of M, L(H1), . . . , L(Hk );
λt(M), νt(H1), νt(H2), . . . , νt(Hk ) are co-eigenvalues of M, Q(H1), · · · ,Q(Hk ) for
t = 1, 2, . . . , n.
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Some new variants the of join of graphs

Definition 3.5.

Let G , H1, H2, . . . , Hk be graphs, each having n vertices and let H be a graph having k vertices
with A(H) = [hij ], i , j = 1, 2, . . . , k. Let M be one of the matrix as given in Table 8. Let Hk =
(H1, H2, . . . , Hk ) and M = (M12, M13, . . . , M1k , M23, M24, . . . , M2k , . . . , M(k−1)k ), where
Mij = hijM for i , j = 1, 2, . . . , k. Then we call the

∨
M Hk as in Table 8.

S. No M Name of the graph operation
1. In The identity join of Hk with respect to H

2. A(G)
The G -neighbourhood join of Hk with respect to
H

3. In + A(G)
The G -closed neighbourhood join of Hk with re-
spect to H

4. Jn − In
The vertex complemented join of Hk with re-
spect to H

5. Jn − A(G)
The G -neighbourhood complemented join of Hk

with respect to H

6. Jn − In − A(G)
The G -closed neighbourhood complemented join
of Hk with respect to H

Table 8: Some new variants of join of graphs constructed as particular cases of
M-join of graphs
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Example 4.3
Consider the graphs G , H, H1, H2, H3 as shown in Figure 5. Let H3 = (H1,H2,H3). Then the graphs constructed by using
these graphs and the graph operations mentioned in Table 8 are shown in Figure 5.

The identity join of H3
The G-neighbourhood join of H3

The G-closed neighbourhood join of The vertex complemented join of

The G-neighbourhood complemented The G-closed neighbourhood complemented

b

b b

b

b b b

G H H1 H2 H3

v1 v2

v3v4

w1 w2
w3 u11 u12

u13u14

u21 u22

u23u24

u31 u32

u33u34

with respect to H
with respect to H

H3 with respect to H H3 with respect to H

join of H3 with respect to H join of H3 with respect to H

b b

bb b

b b

b b

b b
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b

bb

bb
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b b
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Figure 5: Examples for new variants of join of graphs defined in Table 8
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Theorem 3.3.

Let G be an r-regular graph with n vertices and m edges, Hi ∈ {G ,G ,Kn,K n}, Mij ∈
{In, A(G), A(G) + In, A(G), A(G) + In, A(Kn), Jn, 0} for i , j = 1, 2, . . . , k1 and i < j ,
Gi ∈ {L(G), L(G), Km, Km}, Nij ∈ {Im, A(L(G)), A(L(G)) + Im, A(L(G)),
A(L(G)) + Im, A(Km), Jm, 0} for i , j = 1, 2, . . . , k2 and i < j , and
Pij ∈ {0,B(G), Jn×m, Jn×m − B(G)} for i = 1, 2, . . . , k1 and j = 1, 2, . . . , k2. Let
Hk1 = (H1,H2, . . . ,Hk1), Gk2 = (G1,G2, . . . ,Gk2), M = (M12, M13, . . . , M1k1 , M23, M24,
. . . , M2k1 , . . . , M(k1−1)k1), N = (N12, N13, . . . , N1k2 , N23, N24, . . . , N2k2 , . . . , N(k2−1)k2)
and

P =


P11 P12 · · · P1k2

P21 P22 · · · P2k2

...
...

. . .
...

Pk11 Pk12 · · · Pk1k2

 .

Let mij , riq and nhq be the sum of the entries in a row of Mij , Piq, Nhq, respectively, and
let r ′iq be the sum of the entries in a column of Piq for i , j = 1, 2, . . . , k1 and
h, q = 1, 2, . . . , k2. Then the A-spectrum, the L-spectrum and the Q-spectrum of(∨

M Hk1

)
∨P
(∨

N Gk2

)
can be obtained by substituting p1 = r , p2 = 2 and λt = νt(G)

for t = 1, 2, . . . , n and the values bij , b
′
ij , b

′′
ij , piq, p

′
iq, chq, c

′
hq, c

′′
hq for i , j = 1, 2, . . . , k1

and h, q = 1, 2, . . . , k2 in Corollary, which can be obtained by the following procedure:
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(i) Take

Bii =


A(Hi ) for the A-spectrum of

(∨
M Hk1

)
∨P
(∨

N Gk2

)
;

L(Hi ) + di In for the L-spectrum of
(∨

M Hk1

)
∨P
(∨

N Gk2

)
;

Q(Hi ) + di In for the Q-spectrum of
(∨

M Hk1

)
∨P
(∨

N Gk2

)
,

with di =

k1∑
j=1,
j ̸=i

mij +

k2∑
h=1

rih for i = 1, 2, . . . , k1;

Bij = αMij = BT
ji for i , j = 1, 2, . . . , k1; i < j ;

Chh =


A(Gh) for the A-spectrum of

(∨
M Hk1

)
∨P
(∨

N Gk2

)
;

L(Gh) + d ′
hIm for the L-spectrum of

(∨
M Hk1

)
∨P
(∨

N Gk2

)
;

Q(Gh) + d ′
hIm for the Q-spectrum of

(∨
M Hk1

)
∨P
(∨

N Gk2

)
,

with d ′
h =

k2∑
s=1,
h ̸=s

nhs +

k1∑
j=1

r ′jh for h = 1, 2, . . . , k2;

Chq = αNhq = CT
qh for h, q = 1, 2, . . . , k2; h < q;

Qhi = PT
ih for i = 1, 2, . . . , k1; h = 1, 2, . . . , k2.
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(ii) Then Bij = bij In + b′
ijJn + b′′

ij B(G)B(G)T , Pih = pihJn×m + p′
ihB(G) and

Chq = chqIm + c ′hqJm + c ′′hqB(G)TB(G), where the values bij , b
′
ij , b

′′
ij , chq, c

′
hq, c

′′
hq

for i , j = 1, 2, . . . , k1 and h, q = 1, 2, . . . , k2 can be obtained by using Table 4;

Remark 3.1.

If G is an r -regular graph and Hi ∈ {G , G , Kn, K n}, Mij ∈ {In, A(G), A(G) + In, A(G),
A(G) + In, A(Kn), Jn, 0} for i , j = 1, 2, . . . , k, then by using Theorem 3.3, the
A-spectrum, the L-spectrum and the Q-spectrum of M-join of Hk can be obtained by
taking k2 = 0. Thus we can obtain the A-spectra, the L-spectra and the Q-spectra of
the graphs defined in Definition 3.5.
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Some new variants of the join of graphs using unary graphs

Definition 3.6.

Let G be a graph with n vertices and H be a graph having k vertices with A(H) = [hij ].
Let Hi = Ui (G), where Ui ∈ U for i = 1, 2, . . . , k. Let M be one of the matrix as given
in Table 9. Let Hk = (H1, H2, . . . , Hk) and M = (M12, M13, . . . , M1k2 , M23, M24, . . . ,

M2k , . . . , M(k−1)k), where Mij =
[
hijM 0
0 0

]
for i , j = 1, 2, . . . , k; i < j . Then we call the

M-join of Hk as in Table 9.

S. No M Name of the graph operation
1. In The vertex-identity join of Hk with respect to H
2. A(G) The vertex-G -neighbourhood join of Hk with respect to H

3. A(G) + In
The vertex-G -closed neighbourhood join of Hk with respect to
H

4. Jn − In The vertex-complemented join of Hk with respect to H

5. Jn − A(G)
The vertex-G -neighbourhood complemented join of Hk with re-
spect to H

6. Jn − In − A(G)
The vertex-G -closed neighbourhood complemented join of Hk
with respect to H

Table 9: Some new variants of join of graphs constructed as particular cases of∨
M Hk using unary graph operations
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Example 4.4
Let H1 = Q(C4), H2 = S(C4), H3 = Ct(C4). Then the graphs constructed by using
these graphs and the graph operations mentioned in Table 9 are as shown in Figure 6.

The vertex-identity join of H3 The vertex-G-neighbourhood join of H3

The vertex-G-closed neighbourhood The vertex-complemented join of

The vertex-G-neighbourhood The vertex-G-closed neighbourhood

with respect to H with respect to H

join of H3 with respect to H H3 with respect to H

complemented join of H3 complemented join of H3
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Figure 6: Examples for new variants of join of graphs defined in Table 9

56 / 83



M-join of graphs Some new variants of the join of graphs

Theorem 3.4.

Let G be an r-regular graph with n vertices and m (= 1
2
nr) edges. Let

M ∈ {In,A(G),A(G) + In,A(G),A(G) + In, Jn − In, Jn, 0}. Let H be an r1-regular graph
having k vertices with A(H) = [hij ], i , j = 1, 2, . . . , k and commutes with M. Let
Hk = (H1,H2, . . . ,Hk) and M=(M12, M13, . . . , M1k , M23, M24, . . . , M2k , . . . , M(k−1)k),

Mij =

[
hijM 0
0 0

]
for i , j = 1, 2, . . . , k; i < j . Let s be the sum of the entries in a row of

M. Then we have the following.

(1) If U ∈ U1 and Hi = U(G) for i = 1, 2, . . . , k, then the A-spectrum, the L-spectrum and

the Q-spectrum of
∨

M Hk are

(i)
1

2

(
α
(i)
t + βt ±

√
(α

(i)
t − βt)2 − 4νt(G)

)
,

where α
(i)
t = b + ρ(sr1 + r) + θtnb′ + b′′νt(G) + αλi (H)λt(M),

βt = c + 2ρ+ θtmc ′ + c ′′νt(G) for i = 1, 2, . . . , k; t = 1, 2, . . . , n,
(ii) c + 2ρ with multiplicity k(m − n).

(b, b′, b′′, c, c ′, c ′′) is the sequence of scalars corresponding to A(U(G)), L(U(G)) and
Q(U(G)) in U1 for the A-spectrum, the L-spectrum and the Q-spectrum of

∨
M Hk ,

respectively.
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(2) If U ∈ U2 and Hi = U(G) for i = 1, 2, . . . , k, then the A-spectrum, the L-spectrum and
the Q-spectrum of

∨
M Hk are

1

2

(
α
(i)
t + βt ±

√
(α

(i)
t − βt)2 − 4γ2

t

)
,

where α
(i)
t = b1 + ρ(sr1 + b3 + nb′3 + 2rb′′3 ) + θtnb′1 + b′′1 νt(G) + αλi (H)λt(M),

βt = b2 + ρ(b3 + nb3 + 2rb′′3 ) + θtnb′2 + b′′2 νt(G), γt = b3 + θtnb′3 + b′′3 νt(G) for
i = 1, 2, . . . , k; t = 1, 2, . . . , n,
(b1, b′1, b

′′
1 , b2, b

′
2, b

′′
2 , b3, b

′
3, b

′′
3 ) is the sequence of scalars corresponding to A(U(G)),

L(U(G)) and Q(U(G)) in U2 for the A-spectrum, the L-spectrum and the Q-spectrum of∨
M Hk , respectively.

(3) If U ∈ U3 and Hi = U(G) for i = 1, 2, . . . , k, then the A-spectrum, the L-spectrum and

the Q-spectrum of
∨

M Hk are

(i)
1

2

(
α
(i)
t + βt ±

√
(α

(i)
t − βt)2 − 4γt

)
,

where α
(i)
t = b + ρ(sr1 +m − r) + θtnb′ + b′′νt(G) + αλi (H)λt(M),

βt = c + (n − 2)ρ+ θtmc ′ + c ′′νt(G), γt = θt(mn − nr − 2m) + νt(G) for
i = 1, 2, . . . , k; t = 1, 2, . . . , n;

(ii) c + ρ(n − 2) with multiplicity k(m − n),

(b, b′, b′′, c, c ′, c ′′) is the sequence of scalars corresponding to A(U(G)), L(U(G)) and
Q(U(G)) in U3 for the A-spectrum, the L-spectrum and the Q-spectrum of

∨
M Hk ,

respectively.
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Corollary 3.4.

Let G and G ′ be regular cospectral graphs and let H be an regular graph having k
vertices with A(H) = [hij ] for i , j = 1, 2, . . . , k which commutes with A(G) and A(G ′).
Let U ∈ U , Hi = U(G), H ′

i = U(G ′) i = 1, 2, . . . , k and let Hk = (H1,H2, . . . ,Hk) and
H′

k = (H ′
1,H

′
2, . . . ,H

′
k). Then the vertex G-identity join of Hk with respect to H and

the vertex G-identity join of H′
k with respect to H are simultaneously A-cospectral,

L-cospectral and Q-cospectral.

Remark 3.2.
For each graph operation defined in Table 9, we can construct cospectral graphs by
using a similar procedure described in Corollary 3.4.
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(H ,H1,H2, . . . ,Hk)-merged F -subdivision-edge
complemented graph of a graph with respect to T1 and T2

Let G be a graph with V (G) = {v1, v2, . . . , vn} and E(G) = {e1, e2, . . . , em}. Let F be a
graph with V (F ) = {u1, u2, . . . , uk}, and let T1, T2 ⊆ V (F ). Let H be a graph with
V (H) = {w1,w2, . . . ,wn} and let Hi be a graph with V (Hi ) = {ui1, ui2, . . . , uim} for
i = 1, 2, . . . , k.

Definition 3.7.
The F -subdivision-edge complement graph of G with respect to T1 and T2 is the
graph obtained by taking one copy of G and a copy F corresponding to each edge of G ,
and

(i) joining each vertex in T1 to the end vertices of the corresponding edge;

(ii) joining each vertex in T2 to the vertices of G other than the end vertices of the
corresponding edge;

(iii) deleting all the edges of G .
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Notice that, if T1 = V (F ) and T2 = ϕ, then the F -subdivision-edge complement graph
of G with respect to T1 and T2 is the graph S(G ,F ) defined in [51], which we call it as
F-subdivision graph of G .

Definition 3.8.
The (H,H1,H2, . . . ,Hk)-merged F -subdivision-edge complement graph of G with
respect to T1 and T2 is the graph obtained by taking one copy of F -subdivision-edge
complement graph of G with respect to T1 and T2, and

(i) joining the vertices vr and vs if and only if the vertices wr and ws are adjacent in
H for r , s = 1, 2, . . . , n;

(ii) joining the vertices ur in the i-th and j-th copy of F if and only if the vertices uri
and urj are adjacent in Hr for r = 1, 2, . . . , k; i , j = 1, 2, . . . ,m.

Notice that if F has a single vertex, T1 = V (F ) and T2 = ϕ, then the (H, H1, H2, . . . ,
Hk)-merged F -subdivision graph-edge complement of G with respect to T1 and T2 is
same as the (H,H1)-merged subdivision graph of G .
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Example 4.5
Consider the graphs G , F , H, H1, H2, H3 as in Figure 7. Let T1 = {u1, u3}, T2 = {u3}.
Then F -subdivision-edge complement graph of G with respect to T1 and T2 and
(H,H1,H2,H3)-merged subdivision-edge complement graph of G with respect to T1, T2

are as shown in Figure 7.
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complement graph of a graph G with respect to T1 and T2
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Theorem 3.5.

Let Γ be the (H,H1,H2, . . . ,Hk)-merged F -subdivision-edge complement graph of G
with respect to T1 and T2. Also assume the following.

(1) F is a graph with V (F ) = {u1, u2, . . . , uk}; A(F ) = [fij ], i , j = 1, 2, . . . , k and dh is
the degree of uh in F for h = 1, 2, . . . , k.

(2) T1,T2 ⊆ V (F ); t1 = |T1 \ T2|; t2 = |T2 \ T1|; t3 = |T1 ∩ T2|.

(3) d ′
i =


2 if ui ∈ T1 \ T2;

m − 2 if ui ∈ T2 \ T1;

m if ui ∈ T1 ∩ T2;

0 otherwise,

p
(t)
i =


r + λt(G) if ui ∈ T1 \ T2;

m − r − λt(G) if ui ∈ T2 \ T1;

mn if ui ∈ T1 ∩ T2;

0 otherwise.

βi =


1 if ui ∈ T1 \ T2;

−1 if ui ∈ T2 \ T1;

0 otherwise.
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(4) H ∈ {G ,G ,Kn,Kn}, Hi ∈ {L(G),L(G),Km,Km} and let bi , b
′
i and b′′i be such that

bi Im + b′i Jm + b′′i B(G)TB(G) =


A(Hi ) for the A-spectrum of Γ;

L(Hi ) for the L-spectrum of Γ;

Q(Hi ) for the Q-spectrum of Γ
for i = 1, 2, . . . , k.

(5)

Et =



λ(t) αp
(t)
1 αp

(t)
2 . . . αp

(t)
k

αβ1 λ
(t)
1 αf12 . . . αf1k

αβ2 αf21 λ
(t)
2 . . . αf2k

...
...

...
. . .

...

αβk αfk1 αfk2 . . . λ
(t)
k


,

where

λ(t) =


λt(H) for the A-spectrum of Γ;

µt(H) + rt1 + t2(n − r) + nt3 for the L-spectrum of Γ;

νt(H) + rt1 + t2(n − r) + nt3 for the Q-spectrum of Γ,

with λ
(t)
i = bi + θtm + b′′i νt(G) + ρ(di + d ′

i ) for t = 1, 2, . . . , n; i = 1, 2, . . . , k.
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(6) B̂ = αA(F ) + diag(b1 + ρ(d1 + d ′
1), b2 + ρ(d2 + d ′

2), . . . , bk + ρ(dk + d ′
k)).

Then the A-spectrum, the L-spectrum and the Q-spectrum of (H, H1, H2,
. . . ,Hk)-merged F -subdivision-edge complement graph of G can be
obtained from

n∑

t=1

σ(Et) + (m − n)σ(B̂).
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Quadruple join of graphs

Definition 3.9.

Let Hi be a graph and let Ti ⊆ V (Hi ) for i = 1, 2, . . . , k. Let Hk = (H1,H2, . . . ,Hk)
and T = (T1,T2, . . . ,Tk). Let Fi be a graph with V (Fi ) = {ui1, ui2, . . . , uik} for
i = 1, 2, 3, 4. Then the quadruple join of Hk with respect to (F1,F2,F3,F4)
constrained by T is the graph obtained by taking one copy of the graphs H1, H2, . . .,
Hk , and

(i) joining each vertex of Ti to all the vertices of Tj if and only if u1i and u1j are
adjacent in F1 for i , j = 1, 2, . . . , k;

(ii) joining each vertex of Ti to all the vertices of T c
j if and only if u2i and u2j are

adjacent in F2 for i , j = 1, 2, . . . , k; i < j ;

(iii) joining each vertex of T c
i to all the vertices of Tj if and only if u3i and u3j are

adjacent in F3 for i , j = 1, 2, . . . , k; i < j ;

(iv) joining each vertex of T c
i to all the vertices of T c

j if and only if u4i and u4j are
adjacent in F4 for i , j = 1, 2, . . . , k.
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Example 4.6
Consider the graphs H1, H2, H3, F1, F2, F3 and F4 as shown in Figure 8. The quadruple
join of the graphs (H1,H2,H3) with respect to the graphs (F1,F2,F3,F4) constrained by
T = (T1,T2,T3) is as shown in Figure 8, where Ti is a vertex subset of Hi whose
vertices are colored with yellow for i = 1, 2, 3 and F1, F2, F3, F4 are properly arrange in
this figure.
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bc bc
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bcb b b b
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b

b

b

b

The quadruple join of (H1, H2, H3) with respect to

(F1, F2, F3, F4) constrained by T

Figure 8: Example for the quadruple join of graphs (H1,H2,H3) with respect to
(F1,F2,F3,F4) constrained by T
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Remark 3.3.

Some special cases for k and the graphs F1,F2,F3,F4, Hi and Ti for i = 1, 2, . . . , k in
Definition 3.9, gives some existing variants of join of graphs: Let G1 and G2 be any two
graphs.

(1) Taking F2, F3, F4 as K k and F1 = H, where H is a graph with k vertices in
Definition 3.9, we can obtain the H-generalized join of Hk constrained by vertex
subsets T .

(2) Taking k = 2, H1 = S(G1), H2 = G2, T1 = V (G1), T2 = V (G2), F1 = F2 = K2,
F3 = F4 = K 2 (resp. F1 = F2 = K 2, F3 = F4 = K2) in Definition 3.9, we can
obtain the S-vertex join (resp. S-edge join) of G1 and G2.

(3) Taking k = 2, H1 = R(G1), H2 = G2, T1 = V (G1), T2 = V (G2), F1 = F2 = K2,
F3 = F4 = K 2 (resp. F1 = F2 = K 2, F3 = F4 = K2) in Definition 3.9, we can
obtain the R-vertex join (resp. R-edge join) of G1 and G2.

(4) Taking k = 2, H1 = DG(G1), H2 = G2, T1 = V (G1), T2 = V (G2), F1 = F2 = K2,
F3 = F4 = K 2 (resp. F1 = F2 = K 2, F3 = F4 = K2) in Definition 3.9, we can
obtain the DG -vertex join (resp. DG -add vertex join) of G1 and G2.
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(5) Taking k = 2, H1 = S(G1), H2 = S(G2), T1 = V (G1), T2 = V (G2), F1 = K2,
F2 = F3 = F4 = K 2 (resp. F2 = K2, F1 = F3 = F4 = K 2) in Definition 3.9, we can
obtain the subdivision vertex-vertex join (resp. subdivision vertex-edge join) of G1

and G2.

(6) Let H be a graph with V (H) = {u1, u2, u3} and E(H) = {{u1, u2}}, and let H ′ be
a graph with V (H ′) = {v1, v2, v3} and E(H ′) = {{v1, v3}}. Then the subdivision
double join (resp. R-graph double join, Q-graph double join, total graph double
join) of G1, G2 and G3 can be obtained by taking k = 3, H1 = S(G1), (resp.
H1 = R(G1), H1 = Q(G1), H1 = T (G1)) H2 = G2, H3 = G3, T1 = V (G1),
T2 = V (G2), T3 = V (G3), F1 = H, F3 = H ′ and F2 = F4 = K 3 in Definition 3.9.

Theorem 3.6.

Let Gi be an ri -regular graphs with ni vertices and mi edges for i = 1, 2, . . . , k1. Let
U ∈ U , Hi = U(Gi ), Ti = V (Gi ), and let Hj be a graph, Tj = V (Hj) for i = 1, 2, . . . , k1;
j = k1 + 1, k1 + 2, . . . , k2, and let F1,F2,F3,F4 be graphs with k2 vertices and
A(Fs) = [h

(s)
ij ] for i , j = 1, 2, . . . , k2; s = 1, 2, 3, 4. Let Hk2 = (H1, H2, . . . , Hk2) and

T = (T1,T2, . . . ,Tk2). Then the A-spectrum, the L-spectrum and the Q-spectrum of
the quadruple join of Hk2 with respect to (F1,F2,F3,F4) constrained by T is
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σ(E) +

k2∑
i=1

σ(Mi ) \ {σ(δMi )},

where

Mi =


A(Hi ) for the A-spectrum of Γ;

L(Hi ) for the L-spectrum of Γ;

Q(Hi ) for the Q-spectrum of Γ;

for i = 1, 2, . . . , k2,

E =


E11 E12 . . . E1k2

E21 E22 . . . E2k2

...
...

. . .
...

Ek21 Ek22 . . . Ek2k2

 ,

with Eii =
[c1i c2i
c3i c4i

]
for i , j = 1, 2, . . . , k1;

Eij =

[
h
(1)
ij nj h

(2)
ij tj

h
(3)
ij nj h

(4)
ij tj

]
for i , j = 1, 2, . . . , k1; i ̸= j ,

c1i = b1i + nib
′
1i + 2rib

′′
1i + ρd1i ;
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c2i =


ri if U ∈ U1;

b3i + nib
′
3i + 2rib

′′
3i if U ∈ U2;

mi − ri if U ∈ U3;

,

c3i =


2 if U ∈ U1;

c2i if U ∈ U2;

ni − 2 if U ∈ U3;

c4i = b2i + tib
′
2i + 2rib

′′
2i + ρd2i ;

ti =

{
mi for U ∈ U1 ∪ U3;

ni for U ∈ U2;

for i = 1, 2, . . . , k1;

Eij =

[
h
(1)
ij nj

h
(3)
ij nj

]
= ET

ji for i = 1, 2, . . . , k1, j = k1 + 1, k1 + 2, . . . , k2;

Eii =
[
ri + ρd3i

]
for i = k1 + 1, k1 + 2, . . . , k2;

Eij =
[
h
(1)
ij nj

]
for i , j = k1 + 1, k1 + 2, . . . , k2; i ̸= j ;
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d1i =

k1∑
j=1
j ̸=i

h
(1)
ij nj +

k2∑
j=1
j ̸=i

h
(2)
ij tj for i = 1, 2, . . . , k1;

d2i =

k1∑
j=1
j ̸=i

h
(3)
ij nj +

k2∑
j=1
j ̸=i

h
(4)
ij tj for i = 1, 2, . . . , k1;

d3i =

k1∑
j=1
j ̸=i

h
(1)
ij nj +

k2∑
j=1
j ̸=i

h
(3)
ij tj for i = k1 + 1, k1 + 2, . . . , k2;

(b1i , b
′
1i , b

′′
1i , b2i , b

′
2i , b

′′
2i ) is the sequence of scalars corresponding to A(U(Gi )) for

U ∈ U1 ∪ U3 and (b1i , b
′
1i , b

′′
1i , b2i , b

′
2i , b

′′
2i , b3i , b

′
3i , b

′′
3i ) is the sequence of scalars

corresponding to A(U(Gi )) for U ∈ U2 for i = 1, 2, . . . , k2.
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Corollary 3.5.

Let Gi and G ′
i be regular cospectral graphs, U ∈ U , Hi = U(Gi ), H

′
i = U(G ′

i ),
Ti = V (Gi ), T

′
i = V (G ′

i ) for i = 1, 2, . . . , k1. Let Hj and H ′
j be regular cospectral

graphs, Tj = V (Hj), T
′
j = V (H ′

j ) for j = k1 + 1, k1 + 2, . . . , k2. Let F1, F2, F3, F4 be
graphs with k2 vertices. Let Hk2 = (H1,H2, . . . ,Hk2), H′

k2
= (H ′

1,H
′
2, . . . ,H

′
k2
),

T = (T1,T2, . . . ,Tk2), T ′ = (T ′
1,T

′
2, . . . ,T

′
k2
). Then the quadruple join of Hk2 with

respect to (F1,F2,F3,F4) constrained by T and the quadruple join of H′
k2

with respect
to (F1,F2,F3,F4) constrained by T ′ are simultaneously A-cospectral, L-cospectral and
Q-cospectral.
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Spectra of the existing variants of join of graphs

Corollary 3.6.

Let Gi be an ri -regular graphs with ni vertices and mi edges for i = 1, 2, . . . , k1. Let
U ∈ U , Hi = U(Gi ), Ti = V (Gi ) and let Hj be a graph, Tj = V (Hj) for i = 1, 2, . . . , k1;
j = k1 + 1, k1 + 2, . . . , k2, and let H be a graph with k2 vertices and A(H) = [hij ] for
i , j = 1, 2, . . . , k2. Let Hk2 = (H1,H2, . . . ,Hk2) and T = (T1, T2, . . . , Tk2). Then the
A-spectrum, the L-spectrum and the Q-spectrum of H-generalized join of Hk2

constrained by T can be obtained by taking h
(2)
ij = h

(3)
ij = h

(4)
ij = 0 and h

(1)
ij = hij for

i , j = 1, 2, . . . , k2 in Theorem 3.6.

Remark 3.4.

Let Gi be an ri -regular graph with ni vertices and mi edges for i = 1, 2, 3.

(1) The A-spectrum, the L-spectrum and the Q-spectrum of S-vertex (resp. S-edge)
join of G1 and G2 can be obtained by taking k1 = 1, k2 = 2, c11 = 0, c21 = r1,
c31 = 2, c41 = 0, h

(1)
ij = h

(2)
ij = 1 and h

(3)
ij = h

(4)
ij = 0 (resp. h

(1)
ij = h

(2)
ij = 0 and

h
(3)
ij = h

(4)
ij = 1) in Theorem 3.6. (cf. Theorem 1.1 and 1.2 in [30]).
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(2) The A-spectrum, the L-spectrum and the Q-spectrum of R-vertex (resp. R-edge
join) join of G1 and G2 can be obtained by taking k1 = 1, k2 = 2, c11 = r1,

c21 = r1, c31 = 2, c41 = 0, h
(1)
ij = h

(2)
ij = 1 and h

(3)
ij = h

(4)
ij = 0 (resp. h

(1)
ij = h

(2)
ij = 0

and h
(3)
ij = h

(4)
ij = 1) in Theorem 3.6. (cf. Theorems 4, 7, 10, 13, 16, 19 in [19]).

(3) The A-spectrum, the L-spectrum and the Q-spectrum of subdivision vertex-vertex
join (resp. subdivision vertex-edge join) of G1 and G2 can be obtained by taking

k1 = 2, k2 = 2, c1i = 2, c2i = ri , c3i = ri , c4i = 0 for i = 1, 2, h
(1)
ij = 1 and

h
(2)
ij = h

(3)
ij = h

(4)
ij = 0 (resp. h

(2)
ij = 0 and h

(1)
ij = h

(3)
ij = h

(4)
ij = 1) in Theorem 3.6.

(cf. Theorems 5 and 7 in [47]).

(4) The A-spectrum, the L-spectrum and the Q-spectrum of subdivision double join of
G1, G2 and G3 can be obtained by taking k1 = 1, k2 = 3, c11 = 0, c21 = r1,
c31 = r1, c41 = 0, h

(1)
ij = 1 and h

(2)
ij = h

(3)
ij = h

(4)
ij = 0 in Theorem 3.6. (cf.

Theorem 4 in [57]).

(5) The A-spectrum, the L-spectrum and the Q-spectrum of Q-graph double join G1

with G2 and G3 can be obtained by taking k1 = 1, k2 = 3, c11 = 0, c21 = r1,
c31 = r1, c41 = 2r1 − 2, h

(1)
ij = 1 and h

(2)
ij = h

(3)
ij = h

(4)
ij = 0 in Theorem 3.6. (cf.

Theorem 6 in [57]).
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(6) The A-spectrum, the L-spectrum and the Q-spectrum of R-graph double join of
G1 with G2 and G3 can be obtained by taking k1 = 1, k2 = 3, c11 = r1, c21 = r1,
c31 = 2, c41 = 0, h

(1)
ij = 1 and h

(2)
ij = h

(3)
ij = h

(4)
ij = 0 in Theorem 3.6. (cf.

Theorem 7 in [57]).

(7) The A-spectrum, the L-spectrum and the Q-spectrum of total graph double join of
G1 with G2 and G3 can be obtained by taking k1 = 1, k2 = 3, c11 = r1, c21 = r1,
c31 = r1, c41 = 2r1 − 2, h

(1)
ij = 1 and h

(2)
ij = h

(3)
ij = h

(4)
ij = 0 in Theorem 3.6. (cf.

Theorem 8 in [57]).
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