A combinatorial game on rooted Galton-Watson trees

Moumanti Podder

Indian Institute of Science Education & Research (IISER) Pune

IIT Kharagpur, Department of Mathematics Weekly Online Seminar December 3, 2021

What's a rooted Galton-Watson tree?

- Start with root vertex ϕ , and an offspring distribution χ (which is a probability distribution supported on \mathbb{N}_0).
- Let ϕ have X_0 children where $X_0 \sim \chi$ (i.e. $\mathbf{P}[X_0 = k] = \chi(k)$ for all $k \in \mathbb{N}_0$).
- Conditioned on $X_0 = m$, enumerate the children of ϕ as v_1, \ldots, v_m . Let v_i have X_i children, where X_1, \ldots, X_m are i.i.d. χ .
- Continue thus. This stochastic process (called a branching process) yields a (random) rooted tree T_χ.
- ► Classical result: \mathcal{T}_{χ} has a positive probability of being infinite (i.e. of survival) if and only if $\mu := \sum_{k \in \mathbb{N}_0} k\chi(k) > 1$.

What are combinatorial games?

- ▶ The ones I study are played on graphs, and in particular, random graphs (such as rooted Galton-Watson trees or Erdős-Rényi random graphs).
- Usually played between two players (their roles in the game may or may not be symmetric to one another). Let us call these players P1 and P2.
- ▶ The graph on which the game is being played is revealed in its entirety to the two players (this means that the players can and must use *look-ahead strategies* to decide their moves). In this sense, these games are *perfect information* games.
- ▶ Both players play *optimally*, i.e. if in a game, P1 is destined to win, then she tries to win as quickly (efficiently) as possible, whereas P2 tries to prolong the game as much as she can.

Why think about such games?

- The short answer is: they are immensely useful in *mathematical logic*, *automaton theory* and *computer science*.
- ▶ They help understand local as well as global structures / patterns inside the random graphs / trees the games are being played on.
- ▶ As an example, the *Ehrenfeucht-Fraïssé games* help investigate whether two graphs / trees are "equivalent" as far as sentences from *first order logic* of a given quantifier depth are concerned.
- ▶ The game I study here is called the *normal game*. I shall illustrate how this game relates with *finite state tree automata*.

The simplest normal game

- Studied by Alexander E. Holroyd and James Martin in their 2018 paper, "Galton-Watson Games".
- \mathfrak{T}_{χ} is visualized as a directed graph, where edge $\{u, v\}$ between parent u and child v is assumed directed from u to v (and denoted (u, v)).
- A token is placed at some vertex v of T_χ at the beginning of the game. We call v the *initial vertex*.
- Players P1 and P2 take turns to move a token along these directed edges. Whoever fails to move (i.e. reaches a leaf vertex), loses the game.

The version I study: it involves jumps!

- Fix a positive integer k.
- Let ρ denote the usual graph metric on \mathcal{T}_{χ} .
- For any vertex u in \mathfrak{T}_{χ} , let

 $\Gamma_i(u) = \{ v \in \mathfrak{T}_{\chi} \setminus \{u\} : \rho(u, v) \leqslant i \text{ and } v \text{ a descendant of } u \}.$

- ▶ When it is P*i*'s turn to move (where $i \in \{1, 2\}$), and the token is at some vertex u, P*i* may move the token to any vertex $v \in \Gamma_k(u)$.
- Thus, unlike the simplest version, v here need not be a child of u, but needs to be some descendant of u at distance at most k from u.

How do we analyze these games?

- Let us consider the simplest version first.
- Let NW denote the set of all vertices v such that if v is the initial vertex, whoever plays the first round, wins.
- Let NL denote the set of all vertices v such that if v is the initial vertex, whoever plays the first round, loses.
- Let nw and n ℓ respectively denote the probabilities of ϕ being in NW and NL.
- ► It is easy to establish recursion relations for nw and nℓ from the description of the game.

The recursions for the simplest version

- For a vertex u to be in NW, it must have at least one child v, such that if the player who plays the first round (say, P1) moves the token to v in the first round, then the game that begins with v as the initial vertex (and whose first round is played by P2) is lost by P2. This means that $v \in NL$.
- ▶ Thus $u \in NW$ if and only if at least one child of u is in NL. This yields

$$nw = \sum_{m=1}^{\infty} \{1 - (1 - n\ell)^m\} \chi(m) = 1 - G(1 - n\ell),\$$

where G is the probability generating function of χ .

The recursions for the simplest version, continued

For u to be in NL, no matter which child v of u P1 (who plays the first round) moves the token to from the initial vertex u, the game that begins with v as the initial vertex and P2 playing the first round is won by P2. That is, $v \in NW$.

▶ Thus $u \in NL$ if and only if *every* child v of u is in NW. This yields

$$\mathbf{n}\ell = \sum_{m=0}^{\infty} (\mathbf{n}\mathbf{w})^m \chi(m) = G(\mathbf{n}\mathbf{w}).$$

Connection with finite state tree automata

- ▶ A finite state automaton is a kind of state machine used in mathematical computing.
- A finite state tree automaton comprises a *finite* set Σ of "states" or "colours", and a "rule" Γ , which is a function from \mathbb{N}_0^{Σ} to Σ .
- If a vertex u has m_i many children that are in state i, for all $i \in \Sigma$, then the state of the parent vertex u is given by

$$\Gamma(m_i: i \in \Sigma).$$

• We now see the desired connection: let $\Sigma = \{NW, NL\}$. Then

$$\Gamma(m_{\rm NW}, m_{\rm NL}) = {\rm NW}$$
 as long as $m_{\rm NL} \ge 1$,

whereas

$$\Gamma(m_{\rm NW}, m_{\rm NL}) = {\rm NL}$$
 as long as $m_{\rm NL} = 0$.

The more complicated recursions for the jump version

- For u to be in NW, at least one $v \in \Gamma_k(u)$ must be in NL.
- ▶ This leads to defining several new classes of vertices:
 - 1. A vertex v is in $\mathcal{C}_{0,1}$ if it has at least one child in NL.
 - 2. For all $2 \leq i \leq k-1$, a vertex v is in $\mathcal{C}_{0,i}$ if it has at least one child in $\mathcal{C}_{0,i-1}$, but v itself is not in $\bigcup_{i=1}^{i-1} \mathcal{C}_{0,i}$.
- ▶ These definitions imply that u is in NW if and only if it has at least one child v that is either in NL or in $\bigcup_{j=1}^{k-1} C_{0,j}$.
- ▶ Notice that by definition, $C_{0,1}, \ldots, C_{0,k-1}$ are all pairwise disjoint, and each is disjoint from NL because if a vertex belongs to $C_{0,i}$, then it is also in NW.
- ► Let $\mathbf{P}[\phi \in \mathcal{C}_{0,i}] = p_{0,i}$. We then have

$$nw = \sum_{m=1}^{\infty} \left\{ 1 - \left(1 - n\ell - \sum_{i=0}^{k-1} p_{0,i} \right)^m \right\} \chi(m)$$
$$= 1 - G \left(1 - n\ell - \sum_{i=0}^{k-1} p_{0,i} \right).$$

Recursions for the jump version, continued

- For u to be in NL, every $v \in \Gamma_k(u)$ must be in NW.
- ► This leads to defining the following new classes of vertices: for 0 ≤ i < j ≤ k, C_{i,j} is the set of all vertices v such that
 - 1. $\Gamma_i(v) \subset NW$,
 - 2. $\Gamma_{j-1}(v) \cap \mathrm{NL} = \emptyset$,
 - 3. there exists some vertex in $\Gamma_j(v) \setminus \Gamma_{j-1}(v)$ that is in NL.
- ▶ Note that $C_{0,j}$ is obtained by setting i = 0 in the above definition, for each j.
- Let $p_{i,j} = \mathbf{P}[\phi \in \mathcal{C}_{i,j}]$ for all $0 \leq i < j \leq k$.
- ▶ We then see that $u \in NL$ if and only if *every* child of u is in $C_{k-1,k}$. Hence

$$n\ell = \sum_{m=0}^{\infty} (p_{k-1,k})^m \chi(m) = G(p_{k-1,k}).$$

What these recursions lead to

- ▶ We can establish recursions relating $C_{i,j}$ with $C_{i-1,\ell}$ for all $\ell \ge j-1$, and thereby, recursions connecting all the $p_{i,j}$ s with each other.
- ▶ These recursions, combined together, allow us to write $n\ell = H(n\ell)$ for a rather complicated function *H*.
- ▶ In fact, by considering subsets $NL^{(n)} \subset NL$ that comprise vertices v such that a game starting at v lasts < n many rounds, for $n \in \mathbb{N}$, and applying the recursions to these more refined subsets, we can conclude that $n\ell$ is the smallest fixed point of H in [0, 1].
- We can then obtain nw as a function of $n\ell$.

Is there a connection between the jump version and automata?

- Consider a generalized notion of finite state tree automata: we are now provided the states (in Σ) to which all the vertices of $\Gamma_k(u)$ belong.
- The state of u is then determined from the states of all vertices in $\Gamma_k(u)$.
- ▶ In our set-up, let $\Sigma = \{NW, NL\}$, and the rule of the automaton states that:
 - 1. $u \in \text{NW}$ if at least one vertex in $\Gamma_k(u)$ is in NL,
 - 2. and $u \in NL$ if evert vertex in $\Gamma_k(u)$ is in NW.

Further results I have so far

 A popular offspring distribution to consider for rooted Galton-Watson trees is Poisson(λ) for various values of λ > 0. Recall that in this case,

$$\chi(i) = e^{-\lambda} \cdot \frac{\lambda^i}{i!}$$

- ▶ We consider ND to be the set of all vertices v not in NW \cup NL, i.e. if such a v is an initial vertex, the game ends in a draw. Let $nd = \mathbf{P}[\phi \in ND]$.
- ▶ From the previously described recursions, one can find a necessary and sufficient condition for nd to be positive.
- ▶ I show that $nd = nd(\lambda) > 0$ for all λ sufficiently large.
- ▶ In fact, I establish that $n\ell = n\ell(\lambda) \to 0$ as $\lambda \to \infty$, which in turn ensures that $nw = nw(\lambda) \to 0$ as $\lambda \to \infty$, and thus $nd = nd(\lambda) \to 1$ as $\lambda \to \infty$.

Thank you!

