A combinatorial game on rooted Galton-Watson trees

Moumanti Podder
Indian Institute of Science Education \& Research (IISER) Pune

IIT Kharagpur, Department of Mathematics Weekly Online Seminar

December 3, 2021

What's a rooted Galton-Watson tree?

- Start with root vertex ϕ, and an offspring distribution χ (which is a probability distribution supported on \mathbb{N}_{0}).
- Let ϕ have X_{0} children where $X_{0} \sim \chi$ (i.e. $\mathbf{P}\left[X_{0}=k\right]=\chi(k)$ for all $k \in \mathbb{N}_{0}$).
- Conditioned on $X_{0}=m$, enumerate the children of ϕ as v_{1}, \ldots, v_{m}. Let v_{i} have X_{i} children, where X_{1}, \ldots, X_{m} are i.i.d. χ.
- Continue thus. This stochastic process (called a branching process) yields a (random) rooted tree \mathcal{T}_{χ}.
- Classical result: \mathcal{T}_{χ} has a positive probability of being infinite (i.e. of survival) if and only if $\mu:=\sum_{k \in \mathbb{N}_{0}} k \chi(k)>1$.

What are combinatorial games?

- The ones I study are played on graphs, and in particular, random graphs (such as rooted Galton-Watson trees or Erdős-Rényi random graphs).
- Usually played between two players (their roles in the game may or may not be symmetric to one another). Let us call these players P1 and P2.
- The graph on which the game is being played is revealed in its entirety to the two players (this means that the players can and must use look-ahead strategies to decide their moves). In this sense, these games are perfect information games.
- Both players play optimally, i.e. if in a game, P1 is destined to win, then she tries to win as quickly (efficiently) as possible, whereas P2 tries to prolong the game as much as she can.

Why think about such games?

- The short answer is: they are immensely useful in mathematical logic, automaton theory and computer science.
- They help understand local as well as global structures / patterns inside the random graphs / trees the games are being played on.
- As an example, the Ehrenfeucht-Frä̈ssé games help investigate whether two graphs / trees are "equivalent" as far as sentences from first order logic of a given quantifier depth are concerned.
- The game I study here is called the normal game. I shall illustrate how this game relates with finite state tree automata.

The simplest normal game

- Studied by Alexander E. Holroyd and James Martin in their 2018 paper, "Galton-Watson Games".
- \mathcal{T}_{χ} is visualized as a directed graph, where edge $\{u, v\}$ between parent u and child v is assumed directed from u to v (and denoted $(u, v))$.
- A token is placed at some vertex v of \mathcal{T}_{χ} at the beginning of the game. We call v the initial vertex.
- Players P1 and P2 take turns to move a token along these directed edges. Whoever fails to move (i.e. reaches a leaf vertex), loses the game.

The version I study: it involves jumps!

- Fix a positive integer k.
- Let ρ denote the usual graph metric on \mathcal{T}_{χ}.
- For any vertex u in \mathcal{T}_{χ}, let

$$
\Gamma_{i}(u)=\left\{v \in \mathcal{T}_{\chi} \backslash\{u\}: \rho(u, v) \leqslant i \text { and } v \text { a descendant of } u\right\}
$$

- When it is Pi's turn to move (where $i \in\{1,2\}$), and the token is at some vertex $u, \mathrm{P} i$ may move the token to any vertex $v \in \Gamma_{k}(u)$.
- Thus, unlike the simplest version, v here need not be a child of u, but needs to be some descendant of u at distance at most k from u.

How do we analyze these games?

- Let us consider the simplest version first.
- Let NW denote the set of all vertices v such that if v is the initial vertex, whoever plays the first round, wins.
- Let NL denote the set of all vertices v such that if v is the initial vertex, whoever plays the first round, loses.
- Let nw and $\mathrm{n} \ell$ respectively denote the probabilities of ϕ being in NW and NL.
- It is easy to establish recursion relations for nw and $n \ell$ from the description of the game.

The recursions for the simplest version

- For a vertex u to be in NW, it must have at least one child v, such that if the player who plays the first round (say, P1) moves the token to v in the first round, then the game that begins with v as the initial vertex (and whose first round is played by P2) is lost by P2. This means that $v \in$ NL.
- Thus $u \in$ NW if and only if at least one child of u is in NL. This yields

$$
\mathrm{nw}=\sum_{m=1}^{\infty}\left\{1-(1-\mathrm{n} \ell)^{m}\right\} \chi(m)=1-G(1-\mathrm{n} \ell)
$$

where G is the probability generating function of χ.

The recursions for the simplest version, continued

- For u to be in NL, no matter which child v of u P1 (who plays the first round) moves the token to from the initial vertex u, the game that begins with v as the initial vertex and P 2 playing the first round is won by P2. That is, $v \in \mathrm{NW}$.
- Thus $u \in$ NL if and only if every child v of u is in NW. This yields

$$
\mathrm{n} \ell=\sum_{m=0}^{\infty}(\mathrm{nw})^{m} \chi(m)=G(\mathrm{nw})
$$

Connection with finite state tree automata

- A finite state automaton is a kind of state machine used in mathematical computing.
- A finite state tree automaton comprises a finite set Σ of "states" or "colours", and a "rule" Γ, which is a function from \mathbb{N}_{0}^{Σ} to Σ.
- If a vertex u has m_{i} many children that are in state i, for all $i \in \Sigma$, then the state of the parent vertex u is given by

$$
\Gamma\left(m_{i}: i \in \Sigma\right)
$$

- We now see the desired connection: let $\Sigma=\{N W, N L\}$. Then

$$
\Gamma\left(m_{\mathrm{NW}}, m_{\mathrm{NL}}\right)=\mathrm{NW} \text { as long as } m_{\mathrm{NL}} \geqslant 1
$$

whereas

$$
\Gamma\left(m_{\mathrm{NW}}, m_{\mathrm{NL}}\right)=\mathrm{NL} \text { as long as } m_{\mathrm{NL}}=0
$$

The more complicated recursions for the jump version

- For u to be in NW, at least one $v \in \Gamma_{k}(u)$ must be in NL.
- This leads to defining several new classes of vertices:

1. A vertex v is in $\mathcal{C}_{0,1}$ if it has at least one child in NL.
2. For all $2 \leqslant i \leqslant k-1$, a vertex v is in $\mathfrak{C}_{0, i}$ if it has at least one child in $\mathfrak{C}_{0, i-1}$, but v itself is not in $\bigcup_{j=1}^{i-1} \mathfrak{C}_{0, j}$.

- These definitions imply that u is in NW if and only if it has at least one child v that is either in NL or in $\bigcup_{j=1}^{k-1} \mathcal{C}_{0, j}$.
- Notice that by definition, $\mathfrak{C}_{0,1}, \ldots, \mathfrak{C}_{0, k-1}$ are all pairwise disjoint, and each is disjoint from NL because if a vertex belongs to $\mathfrak{C}_{0, i}$, then it is also in NW.
- Let $\mathbf{P}\left[\phi \in \mathcal{C}_{0, i}\right]=p_{0, i}$. We then have

$$
\begin{aligned}
\mathrm{nw}=\sum_{m=1}^{\infty}\left\{1-\left(1-\mathrm{n} \ell-\sum_{i=0}^{k-1} p_{0, i}\right)^{m}\right\} & \chi(m) \\
& =1-G\left(1-\mathrm{n} \ell-\sum_{i=0}^{k-1} p_{0, i}\right)
\end{aligned}
$$

Recursions for the jump version, continued

- For u to be in NL, every $v \in \Gamma_{k}(u)$ must be in NW.
- This leads to defining the following new classes of vertices: for $0 \leqslant i<j \leqslant k, \mathcal{C}_{i, j}$ is the set of all vertices v such that

1. $\Gamma_{i}(v) \subset \mathrm{NW}$,
2. $\Gamma_{j-1}(v) \cap \mathrm{NL}=\emptyset$,
3. there exists some vertex in $\Gamma_{j}(v) \backslash \Gamma_{j-1}(v)$ that is in NL.

- Note that $\mathcal{C}_{0, j}$ is obtained by setting $i=0$ in the above definition, for each j.
- Let $p_{i, j}=\mathbf{P}\left[\phi \in \mathcal{C}_{i, j}\right]$ for all $0 \leqslant i<j \leqslant k$.
- We then see that $u \in \mathrm{NL}$ if and only if every child of u is in $\mathcal{C}_{k-1, k}$. Hence

$$
\mathrm{n} \ell=\sum_{m=0}^{\infty}\left(p_{k-1, k}\right)^{m} \chi(m)=G\left(p_{k-1, k}\right) .
$$

What these recursions lead to

- We can establish recursions relating $\mathcal{C}_{i, j}$ with $\mathcal{C}_{i-1, \ell}$ for all $\ell \geqslant j-1$, and thereby, recursions connecting all the $p_{i, j}$ with each other.
- These recursions, combined together, allow us to write $\mathrm{n} \ell=H(\mathrm{n} \ell)$ for a rather complicated function H.
- In fact, by considering subsets $\mathrm{NL}^{(n)} \subset$ NL that comprise vertices v such that a game starting at v lasts $<n$ many rounds, for $n \in \mathbb{N}$, and applying the recursions to these more refined subsets, we can conclude that $\mathrm{n} \ell$ is the smallest fixed point of H in $[0,1]$.
- We can then obtain nw as a function of $n \ell$.

Is there a connection between the jump version and automata?

- Consider a generalized notion of finite state tree automata: we are now provided the states (in Σ) to which all the vertices of $\Gamma_{k}(u)$ belong.
- The state of u is then determined from the states of all vertices in $\Gamma_{k}(u)$.
- In our set-up, let $\Sigma=\{\mathrm{NW}, \mathrm{NL}\}$, and the rule of the automaton states that:

1. $u \in$ NW if at least one vertex in $\Gamma_{k}(u)$ is in NL,
2. and $u \in$ NL if evert vertex in $\Gamma_{k}(u)$ is in NW.

Further results I have so far

- A popular offspring distribution to consider for rooted Galton-Watson trees is Poisson (λ) for various values of $\lambda>0$. Recall that in this case,

$$
\chi(i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

- We consider ND to be the set of all vertices v not in NW \cup NL, i.e. if such a v is an initial vertex, the game ends in a draw. Let $\mathrm{nd}=\mathbf{P}[\phi \in \mathrm{ND}]$.
- From the previously described recursions, one can find a necessary and sufficient condition for nd to be positive.
- I show that $\mathrm{nd}=\operatorname{nd}(\lambda)>0$ for all λ sufficiently large.
- In fact, I establish that $\mathrm{n} \ell=\mathrm{n} \ell(\lambda) \rightarrow 0$ as $\lambda \rightarrow \infty$, which in turn ensures that nw $=\operatorname{nw}(\lambda) \rightarrow 0$ as $\lambda \rightarrow \infty$, and thus $\operatorname{nd}=\operatorname{nd}(\lambda) \rightarrow 1$ as $\lambda \rightarrow \infty$.

Thank you!

