SPECTRAL ANALYSIS OF t-PATH SIGNED GRAPHS

DEEPA SINHA

ABSTRACT. Formally, a signed graph S is a pair (G, σ) that consists of a graph G = (V, E) and a sign mapping called signature σ from E to the sign group $\{+, -\}$. Given a signed graph S and a positive integer t, the t-path signed graph $(S)_t$ of S is a signed graph whose vertex set is V(S) and two vertices are adjacent if and only if there exists a path of length t between these vertices and then by defining its sign $s_t(e)$ to be '-' if and only if in every such path of length t in S all the edges are negative. The negation $\eta(S)$ of a signed graph S is a signed graph obtained from S by reversing the sign of every edge of S. Two signed graphs S_1 and S_2 on the same underlying graph are switching equivalent if it is possible to assign signs '+' ('plus') or '-' ('minus') to the vertices of S_1 such that by reversing the sign of each of its edges that have received opposite signs at its ends, one obtains S_2 . In this paper, we characterize signed graphs whose negations are switching equivalent to their t-path signed graphs for t = 2 and also characterize signed graphs such that the spectrum of their t-path signed graphs, where t = 1, and 2, is symmetric about the origin.

South Asian University, New Delhi-110021, India *Email address:* deepa_sinha2001@yahoo.com

²⁰¹⁰ Mathematics Subject Classification. 05C22, 05C75.

Key words and phrases. Balanced signed graph, Marked signed graph, Signed isomorphism, Switching equivalence, t-Path signed graph, Spectrum of a matrix, Eigenvalues.