SPECTRAL ANALYSIS OF t-PATH SIGNED GRAPHS

DEEPA SINHA

Abstract

Formally, a signed graph S is a pair (G, σ) that consists of a graph $G=$ (V, E) and a sign mapping called signature σ from E to the sign group $\{+,-\}$. Given a signed graph S and a positive integer t, the t-path signed graph $(S)_{t}$ of S is a signed graph whose vertex set is $V(S)$ and two vertices are adjacent if and only if there exists a path of length t between these vertices and then by defining its sign $s_{t}(e)$ to be '-' if and only if in every such path of length t in S all the edges are negative. The negation $\eta(S)$ of a signed graph S is a signed graph obtained from S by reversing the sign of every edge of S. Two signed graphs S_{1} and S_{2} on the same underlying graph are switching equivalent if it is possible to assign signs ' + ' ('plus') or ' - ' ('minus') to the vertices of S_{1} such that by reversing the sign of each of its edges that have received opposite signs at its ends, one obtains S_{2}. In this paper, we characterize signed graphs whose negations are switching equivalent to their t-path signed graphs for $t=2$ and also characterize signed graphs such that the spectrum of their t-path signed graphs, where $t=1$, and 2 , is symmetric about the origin.

[^0]
[^0]: 2010 Mathematics Subject Classification. 05C22, 05C75.
 Key words and phrases. Balanced signed graph, Marked signed graph, Signed isomorphism, Switching equivalence, t-Path signed graph, Spectrum of a matrix, Eigenvalues.

