INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
MA20013 - Discrete Mathematics
Problem Sheet 1 Spring 2019

Problem 1. If S is a nonempty set, then show that S has $2^{|S|}$ distinct subsets.
Problem 2. Let A and B be two finite non-empty sets. How may functions are there between the sets A and B ?

Problem 3. A palindrome is a string whose reversal is identical to the string. How many bit strings of length n are palindromes?

Problem 4. Let d be a positive integer. Show that among any group of $d+1$ (not necessarily consecutive) integers there are two with exactly the same reminder when they are divided by d.

Problem 5. If f is a function from S to T, where S and T are finite sets with $|S|>|T|$, then show that there exist two distinct elements x, y in S so that $f(x)=$ $f(y)$.

Problem 6. Show that if five integers are selected from the first eight positive integers, there must be a pair of these integers with a sum equals to 9 . Is the conclusion true if four integers selected rather than five integers.

Problem 7. Show that in a group of 5 people, there are not necessarily three mutual known people or mutually unknown people.

Problem 8. Let n and r be non-negative integers with $r \leq n$. Then, show that

$$
\binom{n+1}{k+1}=\sum_{j=r}^{n}\binom{j}{r}
$$

Problem 9. Show that if p is a prime and k is an integer such that $1 \leq k \leq(p-$ 1), then p divides $\binom{p}{k}$.

Problem 10. Prove that

$$
\binom{n}{r}\binom{r}{k}=\binom{n}{k}\binom{n-k}{r-k}
$$

whenever n, r, and k are nonnegative integers with $r \leq n$ and $k \leq r$.

