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Notation

@ R"={(x1,...,X%) : x; € R} and C" = {(x1,...,Xp) : X; € C}.
@ {ey,...,en} - standard basis.

@ For x,y € R, standard inner product (x,y)> = >_1_, Xy, and for
x,y € C", standard inner product (x, y)» = >, x;yi, ¥i denotes the
complex conjugate of y;.

@ R™" denotes the set of all m x n matrices with real entries, and C"*"
denotes the set of all m x n matrices with complex entries.
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Inner product space

Definition

Let V be a vector space over F ( R or C). An inner product is a function that
assigns to every ordered pair of vector x and y in V, a scalar in F, denoted by
(x,y)suchthatV x,y € V, a € F, the following hold

Q x+z,y) =Xy +(zy)
ax,y) = a(x,y)
y)={y,x)

(
(
{x
(x,x)>0V¥x#0

2]
Q x
o
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Inner product space

Definition

Let V be a vector space over F ( R or C). An inner product is a function that
assigns to every ordered pair of vector x and y in V, a scalar in F, denoted by
(x,y) suchthatV x,y € V, a € F, the following hold

Q X+zy)=(xy) +(z.y)
Q (ax,y) = alx,y)

Q (x,y)={y.x)

Q (x,x)>0Vx#0

Definition
A vector space V is an inner product space if there is an inner product
defined on it.
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Norm

Let V be a vector space over F, where F = R or C. A function
[l.I| : Vx V —[0,00) isanormifforall x,y € Vand X € F, ||.|| satisfies the
following conditions:

@ ||x|| =0ifand only if x =0,

@ [[Ax]| = [A[llx]],

o [[x+yll < Ix][ + llyll-
Example

@ V =R, ||x|| = |x|, the absolute values of x.
@ V=R"||x]| = (X, X),.

@ V =R"and Abe an n x n positive definite matrix, ||x||a = v/ (AX, X),
(Exercise)
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Define ||x|| = v/(X, X)

Theorem

Let V be an inner product space over F. ThenVx,y € V,c € F, the following
hold

Q lex| = lellix|,
Q@ |x|| = 0 ifand only if x = 0, and
Q Ix+yll <lixl+lyll-
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Define ||x|| = v/(X, X)

Theorem

Let V be an inner product space over F. ThenVx,y € V,c € F, the following
hold

Q lex| = lellix|,
Q@ |x|| = 0 ifand only if x = 0, and
Q Ix+yll <lixl+lyll-

Theorem (Cauchy-Schwarz Inequality)
[ < Ixl[llyll vx,y € V
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Definition
Let V be an inner product space. Two vectors x and y are said to be
orthogonal if (x,y) = 0.
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Definition

Let V be an inner product space. Two vectors x and y are said to be
orthogonal if (x,y) = 0. A subset S of V is said to be orthogonal if any two
distinct elements of S are orthogonal. An orthogonal set S in V is said to be
orthonormal if norm of every element in S is equal to 1.

Definition (Orthonormal basis)

An ordered basis B of an inner product space V is said to be orthonormal
basis if B is orthonormal.
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Theorem

Let V be an inner product space and S = {v4, v, ..., vk} be an orthogonal
subset of V consisting of non zero vectors. If y € span(S), then

Y =Sk v

7/16



7/16

Theorem

Let V be an inner product space and S = {v4, v, ..., vk} be an orthogonal
subset of V consisting of non zero vectors. If y € span(S), then

Y =Sk v

Remark

If{vi,va,...,vp} is an orthonormal set, then, for any y € span
{vi,Vo,...,Vp}, we have y = ZL (y, vi)v




7/16

Theorem

Let V be an inner product space and S = {v4, v, ..., vk} be an orthogonal
subset of V consisting of non zero vectors. If y € span(S), then

Y =Sk v

Remark

If{vi,va,...,vp} is an orthonormal set, then, for any y € span
{vi,Vo,...,Vp}, we have y = ZL (y, Vi) Vi

Remark

If S is an orthonormal set in an inner product space V, consisting of non zero
vectors, then S is linearly independent.

v




Definition (Gram-Schmidt Process)
Let V be an inner product space and S = {wy, ws, ..., w,} be a linearly

independent set in V. Define S = {v1, Vo,..., vy}, where vy = wy and
Vi = W — 21 <VV|T’V:’(|>2'V’,2 < k < n. Then S’ is orthogonal and span(S) =
span(S’)
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Definition (Gram-Schmidt Process)

Let V be an inner product space and S = {wy, ws, ..., w,} be a linearly
independent set in V. Define S = {v1, Vo,..., vy}, where vy = wy and

Vi= Wk — 2ry <W‘T",:""|>2""’,2 < k < n. Then S’ is orthogonal and span(S) =

span(S’)

Theorem (Projection Theorem)

Let W be a finite dimensional subspace of an inner product space V and let
y € V. Then 3 unique vectoru € W, z ¢ W+ such thaty = u+ z.
Furthermore if {vy, Vo, ..., Vp} is an orthonormal basis for W, then

u= 27:1 <ya V,'>.V,‘
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Definition (Gram-Schmidt Process)

Let V be an inner product space and S = {wy, ws, ..., w,} be a linearly
independent set in V. Define S = {v1, Vo,..., vy}, where vy = wy and
Ve = Wy — S KV V) v 5 < k< p. Then S is orthogonal and span($S) =

=1 vill?

span(S’)

Theorem (Projection Theorem)

Let W be a finite dimensional subspace of an inner product space V and let
y € V. Then 3 unique vectoru € W, z ¢ W+ such thaty = u+ z.
Furthermore if {vy, Vo, ..., Vp} is an orthonormal basis for W, then

u= 27:1 <ya V,'>.V,‘

Theorem (Riesz Representation Theorem)

Let V be a finite dimensional inner product space and letg : V — F is linear.
Then 3 a unique vector z € V such that g(x) = (x, z)
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Four fundamental subspaces

For an m x n matrix A, the following subspaces are called fundamental
subspaces.

@ Range space of A: R(A) = {x € R™: x = Ay for some y € R"}. (span
of columns of A)
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Four fundamental subspaces

For an m x n matrix A, the following subspaces are called fundamental
subspaces.

@ Range space of A: R(A) = {x € R™: x = Ay for some y € R"}. (span
of columns of A)

@ Null space of A: N(A) ={x e R": Ax =0}.
@ Range space of A: R(AT) = {x € R":x = ATy forsome y € R™}.
@ Null space of AT: N(AT) = {x e R™: ATx =0}.
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Symmetric and Hermitian matrices

Definition

An n x n real matrix is said to be symmetric, if AT = A.
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Symmetric and Hermitian matrices

Definition

An n x n real matrix is said to be symmetric, if AT = A. An n x n matrix is said
to be Hermitian, if A* = A. An n x n matrix is said to be normal, if AA* = A*A

v

Theorem

Eigenvalues of any Hermitian matrix are real numbers. (Eigenvalues of any
real symmetric matrix are real numbers)
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Symmetric and Hermitian matrices

Definition

An n x n real matrix is said to be symmetric, if AT = A. An n x n matrix is said
to be Hermitian, if A* = A. An n x n matrix is said to be normal, if AA* = A*A

v

Theorem

Eigenvalues of any Hermitian matrix are real numbers. (Eigenvalues of any
real symmetric matrix are real numbers)

A real matrix A is said to be orthogonal if AAT = ATA = |, and a complex
matrix A is said to be unitary if AA* = A*A= 1.
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Theorem (Schur, Jacobi)
Every complex matrix A is unitarily similar to an upper triangular matrix.
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Theorem (Schur, Jacobi)
Every complex matrix A is unitarily similar to an upper triangular matrix.

Theorem (Spectral theorem for real symmetric matrices)
Any real symmetric matrix is orthogonally similar to a diagonal matrix.

Theorem (Spectral theorem for Hermitian matrices)
Any Hermitian matrix is unitarily similar to a real diagonal matrix.

Theorem (Spectral theorem for Normal matrices)

An n x n matrix A is normal if and only if A is unitarily similar to a diagonal
matrix.
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Spectral decomposition

Theorem

Let A be an n x n Hermitian matrix with rank r. Then A can be represented in
each of the following equivalent forms:

@ There exists a unitary matrix P and a real diagonal nonsingular matrix A

of rank r such that A — P( ﬁ 8 )P*.
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Spectral decomposition

Theorem
Let A be an n x n Hermitian matrix with rank r. Then A can be represented in
each of the following equivalent forms:

@ There exists a unitary matrix P and a real diagonal nonsingular matrix A

of rank r such thatA:P< ﬁ 8 )P*.

@ There exists non-zero real numbers A\, X2, . .., Ar and orthogonal vectors
Ui,... Uy suchthat A= 3", \iuuy.

@ There exists matrices R and A of orders n x r and r x r , respectively,
such that A is real, diagonal and non-singular, R*R = | and A = RAR*.
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Positive Semidefinite Matrices(PSD)

Let S” denote the subspace of symmetric matrices in R™*". A € S" is positive
semidefinite(PSD) if xT Ax > 0 for every x € R".

Theorem

TFAE for A e S":

a) Ais PSD

b) All the eigenvalues of A are nonnegative,
€

d

All the principal minors of A are nonnegative,

There exists an n x k real matrix B such that A= BB’

P

(f
(9

)
)
)
e) There exists C € S" such that A = C?,
) There exists an n x n lower triangular matrix L such that A= LLT,
)

There exists a k-dimensional Euclidean vector space V and vectors
Vi,...Vp € V such that aj =< vj, v; >,

k
(h) There exists k vectors by, ..., b € R" such that A=Y b;b.
i=1




Positive definite matrices
A € S"is called positive definite (pd), if x” Ax > 0 for every non zero x € R”.

Theorem
TFAE for A € S":
(a) Aispd,
(b) All the eigenvalues of A are positive,
(c) All the principal minors of A are positive,
(d A=BB T for some nonsingular matrix B,
(e) A= LLT, where L is a nonsingular lower triangular matrix,
(f) A= C? where C € S" is nonsingular,
(9) A is the Gram matrix of n linearly independent vectors,

n
(hy A=Y b,-b,-T, where by, . .., by € R" are linearly independent,
i=1

(i) A has a set of n positive nested principal minors, for example

ajy  ap a1 a2 a3
ayy >0, det( a ap ) > 0, det a  ap axg >0,...,det(A) >0
! a3y 432 as
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Schur complement

Definition

A B
LetM = ( c D
complement of D in M is, denote by (M/D), defined by

be a block matrix such that D is invertible. The Schur

A-BD'C.
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Schur complement

Definition

A B
LetM = ( c D
complement of D in M is, denote by (M/D), defined by

be a block matrix such that D is invertible. The Schur

A-BD'C.

Motivation: Gaussian elimination for ( é g ) ( ; > = ( Z > [With
(M/D) invertible]
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Properties
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@ detM = det(M/D)det(D),
@ rank M = rank(M/D) + rank D,

@ Let M be symmetric, and D is nonsingular. Then, M = ( E';\T g ) is
p.d. if and only if (M/D) and D are p.d.

@ Let M be symmetric, and D is nonsingular. If D is p.d., then M is psd if
and only if (M/D) are psd.



