INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR MA60053 - Computational Linear Algebra Problem Sheet - Eigenvalue problems Spring 2020

Problem 1 Let $A \in \mathbb{R}^{m \times n}$, and $B \in \mathbb{R}^{n \times m}$. Show that the matrices

$\begin{bmatrix} AB \end{bmatrix}$	0]	and	0	0]
B	0	and	B	BA

are similar. Using this, show that the nonzero eigenvalues of the matrices AB and BA are the same.

Problem 2 Let $A \in \mathbb{R}^{n \times n}$, and $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A. Show that

$$\sum_{i=1}^{n} |\lambda_i|^2 \le \min_{\det(S) \neq 0} \|S^{-1}AS\|_F^2.$$
(1)

If A is normal, then show that equality holds in (1).

Problem 3 Let $A, B \in \mathbb{R}^{n \times n}$ be symmetric matrices with eigenvalues $\lambda_1 \geq \cdots \geq \lambda_n$ and $\mu_1 \geq \cdots \geq \mu_n$, respectively. Let $\nu_1 \geq \cdots \geq \nu_n$ be the eigenvalues of A + B. Show that $\lambda_j + \mu_n \leq \nu_j \leq \lambda_j + \mu_1$ for all $1 \leq j \leq n$.

Problem 4 Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix, and $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A. Show that, for every $\lambda \in \mathbb{R}$ and $x \in \mathbb{R}^n \setminus \{0\}$,

$$\min_{1 \le j \le n} |\lambda - \lambda_j| \le \frac{\|\lambda x - Ax\|_2}{\|x\|_2}.$$

Problem 5 Let $A \in \mathbb{R}^{n \times n}$, $x \in \mathbb{R}^n$, $||x||_2 = 1$ and λ be a scalar. If $r = Ax - \lambda x$, then, show that, there exists a rank-one matrix E such that $||E||_F = ||r||_2$ and $(A + E)x = \mu x$.

Problem 6 Let $A, B \in \mathbb{R}^{n \times n}$ be symmetric matrices with eigenvalues $\lambda_1 \geq \cdots \geq \lambda_n$ and $\mu_1 \geq \cdots \geq \mu_n$, respectively. Then,

$$\lambda_j - \mu_j | \le ||A - B||,$$

for every compatible matrix norm.

Problem 7 Let $A \in \mathbb{R}^{m \times n}$ with $m \ge n$. Let $\sigma_1 \ge \cdots \ge \sigma_n$ be the singular values of A. Show that

$$\sigma_j = \min_{U \in \mathcal{M}_{n+1-j}} \max_{x \in U, x \neq 0} \frac{\|Ax\|_2}{\|x\|_2}, \qquad 1 \le j \le n$$

where \mathcal{M}_j is the set of all *j*-dimensional subspaces of \mathbb{R}^n .

A matrix $A \in \mathbb{R}^{n \times n}$ is upper Heisenberg, if $a_{ij} = 0$, for $j = 1, \ldots, n-2$, $i = j+2, \ldots, n$. The matrix is reduced if and only if $A_{i+1,i} \neq 0$ for $i = 1, \ldots, n-1$.

Problem 8 Let H be an upper Heisenberg matrix. Define $H_1 = H$ and Q = I. For $k \ge 1$, $H_k = Q_{k+1}R_{k+1}$ (QR-factorization); $H_{k+1} = R_{k+1}Q_{k+1}$. Show that the matrices H_k are orthongonally similar for $k \ge 1$, and they are upper Heisenberg too.