INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
 MA60053 - Computational Linear Algebra
 Problem Sheet - Iterative methods for linear systems
 Spring 2020

Problem 1 If the matrix A is symmetric positive definite, then, show that, the Gauss-Seidel method converges. What about the convergence of Jacobi method?

A matrix A is strictly diagonally dominant if

$$
\sum_{j=1 j \neq i}^{n}\left|a_{i j}\right|<\left|a_{i i}\right| \text { for all } i=1, \ldots, n
$$

Consider the linear system $A x=b$, where $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$.
Problem 2 If the matrix A is strictly diagonally dominant, then show that the Jacobi method and Gauss-Seidel method converges. Does every strictly diagonally dominant A necessarily positive definite?

Problem 3 For a symmetric positive definite matrix A, the relaxation method converges if and only if $0<\omega<2$.

Problem 4 Let A be an $n \times n$ complex matrix with $\rho(A)<1$. Then, show that the matrix $(I-M)$ is invertible, and $(I-M)^{-1}=I+M+M^{2}+\ldots$, the series on the right converging. Conversely, if the series on the right converges, then $\rho(A)<1$.

Consider the linear system $A x=b$ where A is an $n \times n$ matrix, and let $A=M-N$ be a splitting of A, where M is invertible. Consider the iterative scheme associated with this splitting: $x^{(k+1)}=$ $M^{-1} N x^{(k)}+M^{-1} b$.

Problem 5 Show that the iterative method given by the splitting generalizes the Jacobi method, the Gauss-Seidel method and the successive over relaxation method, by provinding proper choices of M and N.

A matrix $A \in \mathbb{C}^{n \times n}$ is convergent if $\rho(A)<1$.
Problem 6 Let $A \in \mathbb{C}^{n \times n}$. Show that the following are equivalent:

1. A is convergent.
2. $\lim _{n \rightarrow \infty} A^{k}=0$.
3. $\lim _{n \rightarrow \infty} A^{k} x=0$, for all $x \in \mathbb{C}^{n}$.
4. $\|B\|<1$, for at least one matrix norm.

Problem 7 Let $A \in \mathbb{R}^{n \times n}$ be symmetric positive definite. The solution of the system $A x=b$ is the unique minimum of the function $f(y)=\frac{1}{2} y^{T} A y-y^{T} b$.

Given a matrix $A \in \mathbb{R}^{n \times n}$ and a vector $b \in \mathbb{R}^{n}$, the Krylov subspaces are defined as follow:

$$
\mathcal{K}_{k}(b, A)=\operatorname{span}\left\{b, A b, \ldots, A^{k-1} b\right\}, \quad k=1,2 \ldots
$$

Problem 8 If the minimal polynomial of a nonsingular matrix A has degree m, then, show that, the solution to $A x=b$ lies in the subspace $\mathcal{K}_{m}(b, A)$.

