INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR MA60053 - Computational Linear Algebra Problem Sheet - Singular Value Decomposition Spring 2020

Problem 1 Let $A \in \mathbb{C}^{m \times n}$ with $m \ge n$. Show that the singular values of the matrix

are equal to $\sqrt{1 + \sigma_j^2}$, where $1 \le j \le n$.

Problem 2 Let $A, B \in \mathbb{C}^{m \times n}$. Show that the matrices A and B have the same singular values if and only if there exists unitary matrices $P \in \mathbb{C}^{m \times m}$ and $Q \in \mathbb{C}^{n \times n}$ such that B = PAQ.

 $\left[\begin{array}{c}I_n\\A\end{array}\right]$

Problem 3 Let $A \in \mathbb{C}^{k \times m}$, $B \in \mathbb{C}^{m \times n}$, $q = \min\{k, n\}$, and $p = \min\{m, n\}$. Show that

$$\sigma_1(AB) \le \sigma_1(A)\sigma_1(B)$$
 and $\sigma_q(AB) \le \sigma_1(A)\sigma_p(B)$.

Problem 4 Let $A \in \mathbb{C}^{m \times n}$ with $m > n, z \in \mathbb{C}^m$, and

$$B = \begin{bmatrix} A & z \end{bmatrix}.$$

Show that $\sigma_{n+1}(B) \leq \sigma_n(A)$ and $\sigma_1(B) \geq \sigma_1(A)$.

Problem 5 Let $A \in \mathbb{C}^{m \times n}$ with $m \ge n, z \in \mathbb{C}^n$, and

$$B = \left[\begin{array}{c} A \\ z^* \end{array} \right].$$

Show that $\sigma_n(B) \ge \sigma_n(A)$ and $\sigma_1(A) \le \sigma_1(B) \le \sqrt{\sigma_1^2(A)} + \|z\|_2^2$

Problem 6 Let $A \in \mathbb{C}^{n \times n}$ be nilpotent such that $A^j = 0$ and $A^{j-1} \neq 0$ for some $j \ge 1$. Let $b \in \mathbb{C}^n$ with $A^{j-1}b \neq 0$. Show that

$$K = \left[\begin{array}{ccc} b & Ab & \dots & A^{j-1}b \end{array} \right]$$

has full column rank.

Problem 7 Let $A \in \mathbb{C}^{n \times n}$. Show that there exists a unitary matrix Q such that $A^* = QAQ$.

Problem 8 Let $A \in \mathbb{C}^{m \times n}$ has rank n. Show that there is a factorization of A = PH, where $P \in \mathbb{C}^{m \times n}$ has orthonormal columns, and $H \in \mathbb{C}^{n \times n}$ is Hermitian positive definite. If $A \in \mathbb{C}^{n \times n}$, then, show that, $||A - P||_2 \leq ||A - Q||_2$ for any unitary matrix Q.

Problem 9 Let $A \in \mathbb{C}^{m \times n}$ has rank *n* have a factorization A = PH as in Problem 8. Show that

$$\frac{\|A^*A - I\|_2}{1 + \|A\|_2} \le \|A - P\|_2 \le \frac{\|A^*A - I\|_2}{1 + \sigma_n}$$

Problem 10 Let $A \in \mathbb{C}^{n \times n}$ and $\sigma > 0$. Show that σ is a singular values of A if and only if the matrix

$$\left[\begin{array}{cc} A & -\sigma I \\ -\sigma I & A^* \end{array}\right]$$

is singular.