INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
 MA60053 - Computational Linear Algebra
 Problem Sheet - Singular Value Decomposition
 Spring 2020

Problem 1 Let $A \in \mathbb{C}^{m \times n}$ with $m \geq n$. Show that the singular values of the matrix

$$
\left[\begin{array}{c}
I_{n} \\
A
\end{array}\right]
$$

are equal to $\sqrt{1+\sigma_{j}^{2}}$, where $1 \leq j \leq n$.
Problem 2 Let $A, B \in \mathbb{C}^{m \times n}$. Show that the matrices A and B have the same singular values if and only if there exists unitary matrices $P \in \mathbb{C}^{m \times m}$ and $Q \in \mathbb{C}^{n \times n}$ such that $B=P A Q$.

Problem 3 Let $A \in \mathbb{C}^{k \times m}, B \in \mathbb{C}^{m \times n}, q=\min \{k, n\}$, and $p=\min \{m, n\}$. Show that

$$
\sigma_{1}(A B) \leq \sigma_{1}(A) \sigma_{1}(B) \quad \text { and } \quad \sigma_{q}(A B) \leq \sigma_{1}(A) \sigma_{p}(B)
$$

Problem 4 Let $A \in \mathbb{C}^{m \times n}$ with $m>n, z \in \mathbb{C}^{m}$, and

$$
B=\left[\begin{array}{ll}
A & z
\end{array}\right] .
$$

Show that $\sigma_{n+1}(B) \leq \sigma_{n}(A)$ and $\sigma_{1}(B) \geq \sigma_{1}(A)$.
Problem 5 Let $A \in \mathbb{C}^{m \times n}$ with $m \geq n, z \in \mathbb{C}^{n}$, and

$$
B=\left[\begin{array}{c}
A \\
z^{*}
\end{array}\right] .
$$

Show that $\sigma_{n}(B) \geq \sigma_{n}(A)$ and $\sigma_{1}(A) \leq \sigma_{1}(B) \leq \sqrt{\left.\sigma_{1}^{2}(A)\right)+\|z\|_{2}^{2}}$
Problem 6 Let $A \in \mathbb{C}^{n \times n}$ be nilpotent such that $A^{j}=0$ and $A^{j-1} \neq 0$ for some $j \geq 1$. Let $b \in \mathbb{C}^{n}$ with $A^{j-1} b \neq 0$. Show that

$$
K=\left[\begin{array}{llll}
b & A b & \ldots & A^{j-1} b
\end{array}\right]
$$

has full column rank.
Problem 7 Let $A \in \mathbb{C}^{n \times n}$. Show that there exists a unitary matrix Q such that $A^{*}=Q A Q$.
Problem 8 Let $A \in \mathbb{C}^{m \times n}$ has rank n. Show that there is a factorization of $A=P H$, where $P \in \mathbb{C}^{m \times n}$ has orthonormal columns, and $H \in \mathbb{C}^{n \times n}$ is Hermitian positive definite. If $A \in \mathbb{C}^{n \times n}$, then, show that, $\|A-P\|_{2} \leq\|A-Q\|_{2}$ for any unitary matrix Q.

Problem 9 Let $A \in \mathbb{C}^{m \times n}$ has rank n have a factorization $A=P H$ as in Problem 8. Show that

$$
\frac{\left\|A^{*} A-I\right\|_{2}}{1+\|A\|_{2}} \leq\|A-P\|_{2} \leq \frac{\left\|A^{*} A-I\right\|_{2}}{1+\sigma_{n}}
$$

Problem 10 Let $A \in \mathbb{C}^{n \times n}$ and $\sigma>0$. Show that σ is a singular values of A if and only if the matrix

$$
\left[\begin{array}{cc}
A & -\sigma I \\
-\sigma I & A^{*}
\end{array}\right]
$$

is singular.

