Problem 1. *Prove that* $||A||_2 \le \sqrt{||A||_1 ||A||_{\infty}}$

Problem 2. For the matrix $A = uv^T$, where $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$. Show that $||A||_2 = ||u||_2 ||v||_2$.

Problem 3. *If O is an orthogonal matrix, then prove the following:*

- 1. $||O||_2 = 1$,
- 2. $||AO||_2 = ||A||_2$,
- 3. $||AO||_F = ||A||_F$.

Problem 4. If *P* and *Q* are orthogonal matrices, then prove that

- 1. $||PAQ||_F = ||A||_F$,
- 2. $||PAQ||_2 = ||A||_2$.

Problem 5. *Prove that* $||A||_{\infty} = max_{1 \le i,j \le n} |a_{ij}|$ *is a norm, but not a matrix norm.*

Problem 6. Show that for any induced matrix norm ||.||, $\rho(A) \leq ||A||$, where $\rho(A)$ is the spectral radius of the matrix A.

Problem 7. Show that for any induced matrix norm ||.||, if ||E|| < 1, then (I - E) is non-singular, and $||(I - E)^{-1}|| \le (1 - ||E||)^{-1}$.

Problem 8. The Hilbert matrix $H_n = (\frac{1}{i+i-1})$ is positive definite.

Problem 9. For an $n \times n$ matrix A, if $\kappa_{\alpha}(A)$ and $\kappa_{\beta}(A)$ are condition numbers with respect to different matrix norms, then prove that there $c_1\kappa_{\alpha}(A) \leq \kappa_{\beta}(A) \leq c_2\kappa_{\alpha}(A)$, for some constants $c_1 > 0, c_2 > 0$.

Problem 10. Let A be an $n \times n$ nonsingular matrix. Then, prove that

$$\min\left\{||E||_{2}: A + E \text{ is singular}\right\} = \frac{1}{||A^{-1}||_{2}}$$

Problem 11. Let A be an $n \times n$ nonsingular matrix. Then, prove that

$$\min\left\{\frac{||E||_2}{||A||_2}: A+E \text{ is singular}\right\} = \frac{1}{\kappa_2(A)},$$

where $\kappa_2(A) = ||A||_2 ||A^{-1}||_2$