MA60053 - Computational Linear Algebra Problem Sheet 2

Problem 1. Prove that $\|A\|_{2} \leq \sqrt{\|A\|_{1}\|A\|_{\infty}}$
Problem 2. For the matrix $A=u v^{T}$, where $u \in \mathbb{R}^{m}$ and $v \in \mathbb{R}^{n}$. Show that $\|A\|_{2}=\|u\|_{2}\|v\|_{2}$.
Problem 3. If O is an orthogonal matrix, then prove the following:

1. $\|O\|_{2}=1$,
2. $\|A O\|_{2}=\|A\|_{2}$,
3. $\|A O\|_{F}=\|A\|_{F}$.

Problem 4. If P and Q are orthogonal matrices, then prove that

1. $\|P A Q\|_{F}=\|A\|_{F}$,
2. $\|P A Q\|_{2}=\|A\|_{2}$.

Problem 5. Prove that $\|A\|_{\infty}=\max _{1 \leq i, j \leq n}\left|a_{i j}\right|$ is a norm, but not a matrix norm.
Problem 6. Show that for any induced matrix norm $\|\|,. \rho(A) \leq\|A\|$, where $\rho(A)$ is the spectral radius of the matrixA.

Problem 7. Show that for any induced matrix norm $\|$.$\| , if \|E\|<1$, then $(I-E)$ is non-singular, and $\left\|(I-E)^{-1}\right\| \leq(1-\|E\|)^{-1}$.

Problem 8. The Hilbert matrix $H_{n}=\left(\frac{1}{i+j-1}\right)$ is positive definite.
Problem 9. For an $n \times n$ matrix A, if $\kappa_{\alpha}(A)$ and $\kappa_{\beta}(A)$ are condition numbers with respect to different matrix norms, then prove that there $c_{1} \kappa_{\alpha}(A) \leq \kappa_{\beta}(A) \leq c_{2} \kappa_{\alpha}(A)$, for some constants $c_{1}>0, c_{2}>0$.

Problem 10. Let A be an $n \times n$ nonsingular matrix. Then, prove that

$$
\min \left\{\|E\|_{2}: A+E \text { is singular }\right\}=\frac{1}{\left\|A^{-1}\right\|_{2}} .
$$

Problem 11. Let A be an $n \times n$ nonsingular matrix. Then, prove that

$$
\min \left\{\frac{\|E\|_{2}}{\|A\|_{2}}: A+E \text { is singular }\right\}=\frac{1}{\kappa_{2}(A)},
$$

where $\kappa_{2}(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2}$

