MA60053 - Computational Linear Algebra Problem Sheet 1

Problem 1. Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times n}$. Prove that the non-zero eigenvalues of the matrices $B A$ and $A B$ are the same.

A square matrix A is said to be
(a) involutory if $A^{2}=I$,
(b) idempotent if $A^{2}=A$,
(c) nilpotent if $A^{k}=0$ for positive integer k.

Problem 2. Let $x \in \mathbb{C}^{n \times 1}, y \in \mathbb{C}^{1 \times n}$. When $x y$ is idempotent? When $x y$ is nilpotent?
Problem 3. Let $x \in \mathbb{C}^{n}$ and $x^{*} x=1$. Show that $I-x x^{*}$ is idempotent.
Problem 4. Let $x \in \mathbb{C}^{n}$ and $x^{*} x=1$. Show that $I-2 x x^{*}$ is involutory.
Problem 5. Prove that an idempotent matrix is either the identity or else is singular.
Problem 6. Prove that square root of a symmetric positive (semi)definite matrix is unique.
Problem 7. Let $A \in \mathbb{R}^{n \times n}$ be symmetric positive definite, and let $B \in \mathbb{R}^{n \times n}$. Then show the following:

1. the matrix $B^{T} A B$ is positive semi-definite,
2. $\operatorname{rank}\left(B^{T} A B\right)=\operatorname{rank}(B)$,
3. the matrix $B^{T} A B$ is positive definite if and only if $\operatorname{rank}(B)=m$.

Problem 8. Let A be an orthogonal matrix. Prove that $\operatorname{det}(A)= \pm 1$. If B is an orthogonal matrix such that $\operatorname{det}(B)=-\operatorname{det}(A)$, then show that $A+B$ is singular.

