Problem 1. Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times n}$. Prove that the non-zero eigenvalues of the matrices BA and AB are the same.

- A square matrix *A* is said to be
- (a) involutory if $A^2 = I$,
- (b) idempotent if $A^2 = A$,
- (c) nilpotent if $A^k = 0$ for positive integer k.

Problem 2. Let $x \in \mathbb{C}^{n \times 1}$, $y \in \mathbb{C}^{1 \times n}$. When xy is idempotent? When xy is nilpotent?

Problem 3. Let $x \in \mathbb{C}^n$ and $x^*x = 1$. Show that $I - xx^*$ is idempotent.

Problem 4. Let $x \in \mathbb{C}^n$ and $x^*x = 1$. Show that $I - 2xx^*$ is involutory.

Problem 5. *Prove that an idempotent matrix is either the identity or else is singular.*

Problem 6. *Prove that square root of a symmetric positive (semi)definite matrix is unique.*

Problem 7. Let $A \in \mathbb{R}^{n \times n}$ be symmetric positive definite, and let $B \in \mathbb{R}^{n \times n}$. Then show the following:

- 1. the matrix $B^T A B$ is positive semi-definite,
- 2. $rank(B^TAB) = rank(B)$,
- 3. the matrix $B^T A B$ is positive definite if and only if rank(B) = m.

Problem 8. Let A be an orthogonal matrix. Prove that $det(A) = \pm 1$. If B is an orthogonal matrix such that det(B) = -det(A), then show that A + B is singular.