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v

Definition
Two n X n matrices A and B are said to be similar, if there exists an
invertible matrix C such that B= C~1AC.
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Algebraic and geometric multiplicity

Definition
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For an eigenvalue X\ of A, the subspace of all eigenvectors of A
corresponding to the eigenvalue A together with the zero vector is called
the eigenspace of A corresponding to the .

Algebraic multiplicity of an eigenvalue A\ of a matrix A is defined as the
multiplicity of \ considered as a root of the characteristic polynomial. An
eigenvalue X is said to be simple, if its algebraic multiplicity is 1.

Geometric multiplicity of an eigenvalue A of a matrix A is defined as the

dimension of the eigenspace associated with A. An eigenvalue X is said to
be regular, if its algebraic multiplicity is equal the geometric multiplicity.
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is greater than or equal to the geometric multiplicity of A, as an eigenvalue
of A.

Proof
o Let {x1,...,xk} be a basis for the eigenspace of \, and let
{x1,X2,...,Xn} be an extension to a basis of C".
@ Set P=[x1 x2 ... Xp].

@ Then P is nonsingular, and

PIAP = P7YAx  Axy ... Axc ... Axy)
=P Ao Ak ... A
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@ Thus,
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Proof cont...

@ Thus,

1.5 [ A B
PAP_<OC,

for some matrices B and C.

o Hence, xa(a) = xp-1ap(@) = (A — @) xc().
@ Thus, the algebraic multiplicity of X is greater than or equal
geometric multiplicity of A.
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Properties

o If X\ is an eigenvalue of A with eigenvector x, then \¥ is an eigenvalue
of A¥ with eigenvector x.
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If X is an eigenvalue of A with eigenvector x, then \¥ is an eigenvalue
of A¥ with eigenvector x.

If f(«) is a polynomial and X is an eigenvalue of A, then f()\) is an
eigenvalue of f(A).

If A1, A2, ..., Ak are the distinct eigenvalues of A, and x1, xo, ..., Xk
are the corresponding eigenvectors. Then the x1, x>, ..., x, are
linearly independent.

If X is a nonzero eigenvalue of a square matrix AB(A and B need not
be square), then X is an eigenvalue of the matrix BA with the same
algebraic and geometric multiplicities. If x1, x,...,x, are linearly
independent eigenvectors of AB corresponding to to A, then

Bxi, ..., Bx, are linearly independent eigenvectors of BA
corresponding to A.
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0 C
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@ By induction, there exists a non-singular matrix W such that

T = W~LCW is upper triangular.

oSeth(é \9\/)

@ Then, P71AP = , for some 1 x n— 1 vector yT and

9/31



Proof cont...

10/31



Proof cont...

|
- (152)(3 )

A yTw

0 , Which is upper triangular .
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Corollary

Let A1, A2, ..., A\ be the eigenvalues of the matrix A and let f(«) be a
polynomial. Then f(A1), f(X2),...,f(\k) are the eigenvalues of f(A).
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Corollary

Let A1, A2, ..., A\ be the eigenvalues of the matrix A and let f(«) be a
polynomial. Then f(A1), f(X2),...,f(\k) are the eigenvalues of f(A).

Proof Exercise!
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Cayely-Hamilton Theorem

Definition
A polynomial f()) is said to annihilate A if f(A) = 0.

Theorem
For every matrix A, the characteristic polynomial of A annihilates A.

Proof.

o By weak Schur's lemma, T = PAP~! for some invertible matrix P
and upper triangular matrix T.

o Let Wy =I5 (T — t;il).
@ Then first k columns of Wj are zero. induction.
o k =1 trivial.
°

Assume the result is true for k — 1.
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Proof cont...

Proof.
o Let B=Wj_1and C =T — tyl.
@ Then, for | < k, we have (Wy); = EJ’-’ZI bjicj = 0.(Reason: b = 0 if
j<k—1andcy=0ifj> k)
@ Thus first k columns of W) are zero, and hence W,, = 0.
e 0=F(T)=PLf(A)P.
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Minimal polynomial

Definition

The monic polynomial of the least degree which annihilates A is called the
minimal polynomial of A.

14/31



Minimal polynomial
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minimal polynomial of A.

v

Theorem
The minimal polynomial of A divides every polynomial which annihilates A.

Proof.

Division algorithm. O
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Proof.

@ Proof of "if" part is clear. Proof of converse.
o Let u(z) be the minimal polynomial of A.

e If X is a characteristic root of A, then p(A)x = u(A)x, where x is the
eigenvector corresponding to the eigenvalue A of A.

e As u(A) =0, so pu(A) =0.
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Semi-simple matrices

Definition
A matrix is said to be semi-simple or diagonalizable if it is similar to a
diagonal matrix.

Remark

If A is semi-simple and is similar to the diagonal matrix diagonal entries
are di, do, ..., d,, then the eigenvalues of the matrix A are di, d>, . . ., dp.

Observation

If P~YAP = D is a diagonal matrix, then AP = DP. We can see that, d; is
an eigenvalue of A with it" column of P as the corresponding eigenvector.
Conversely, if A has n linear independent eigenvectors, and P is the matrix
formed with these vectors as eigenvectors, then P~ AP is diagonal.

v

16/31



Characterization of semisimple matrices

Theorem
The following statements about an n X n matrix A are equivalent:

17/31



Characterization of semisimple matrices

Theorem
The following statements about an n X n matrix A are equivalent:

Q A is semi-simple,

17/31



Characterization of semisimple matrices

Theorem
The following statements about an n X n matrix A are equivalent:
Q A is semi-simple,

@ algebraic multiplicity of every eigenvalue is equal to the geometric
multiplicity of it,

17/31



Characterization of semisimple matrices

Theorem
The following statements about an n X n matrix A are equivalent:
Q A is semi-simple,

@ algebraic multiplicity of every eigenvalue is equal to the geometric
multiplicity of it,

© A has n linearly independent eigenvectors

17/31



Characterization of semisimple matrices

Theorem

The following statements about an n X n matrix A are equivalent:

Q A is semi-simple,

@ algebraic multiplicity of every eigenvalue is equal to the geometric
multiplicity of it,

© A has n linearly independent eigenvectors

@ the minimal polynomial of A is a product of distinct linear
factors.

17/31




Characterization of semisimple matrices

Theorem

The following statements about an n X n matrix A are equivalent:

Q A is semi-simple,

@ algebraic multiplicity of every eigenvalue is equal to the geometric
multiplicity of it,

© A has n linearly independent eigenvectors

@ the minimal polynomial of A is a product of distinct linear
factors.((section 8.5) for minimal polynomial)

17/31




Characterization of semisimple matrices

Theorem
The following statements about an n X n matrix A are equivalent:
Q A is semi-simple,

@ algebraic multiplicity of every eigenvalue is equal to the geometric
multiplicity of it,

© A has n linearly independent eigenvectors

@ the minimal polynomial of A is a product of distinct linear
factors.((section 8.5) for minimal polynomial)

Proof

o (1) implies (2) is clear.

17/31



Characterization of semisimple matrices

Theorem
The following statements about an n X n matrix A are equivalent:
Q A is semi-simple,

@ algebraic multiplicity of every eigenvalue is equal to the geometric
multiplicity of it,

© A has n linearly independent eigenvectors

@ the minimal polynomial of A is a product of distinct linear
factors.((section 8.5) for minimal polynomial)

Proof
o (1) implies (2) is clear.
e (2) implies (3) is clear.

17/31



Characterization of semisimple matrices

Theorem
The following statements about an n X n matrix A are equivalent:
Q A is semi-simple,

@ algebraic multiplicity of every eigenvalue is equal to the geometric
multiplicity of it,

© A has n linearly independent eigenvectors

@ the minimal polynomial of A is a product of distinct linear
factors.((section 8.5) for minimal polynomial)

Proof
o (1) implies (2) is clear.
e (2) implies (3) is clear.

@ (2) implies (1) follows from the observation.
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Applications:

@ If an n x n matrix A has n distinct eigenvalues, then it is
diagonalizable.

@ Any idempotent matrix is diagonalizable(P? = P).

© Any nonzero nilpotent matrix is not diagonalizable(A* = 0, for some
integer k).
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Spectral representation for semi-simple matrices

Theorem

The following statements about an n X n matrix A are equivalent:
© A is semi-simple and has rank r,

@ there exists a non-singular matrix P of order n, and a diagonal

nonsingular matrix A of order r such that A= P ( ﬁ 8 ) Pt

.»7r and vectors uy,...,u, and
Vi,...,Vv, in C" such that v,-TuJ- = ¢;; for all'i,j and

© There exists nonzero scalars 1,72, . .

r
.
A= iy
i=1
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Proof

@ (1) implies (2). Permutation of D.
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Proof

@ (1) implies (2). Permutation of D.
@ (2) implies (1
°

)-
). Trivial.
(2) |mp||es 3). Set §; = i*" diagonal entry of A, u; = ith column of
i
)

P, and v = ith row of P71 .

@ (3) implies (2). Exercise!
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Symmetric and Hermitian matrices

Definition
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An n x n matrix is said to be symmetric, if AT = A. An n x n matrix is
said to be Hermitian, if A* = A.

Theorem

Eigenvalues of any Hermitian matrix are real numbers. (Eigenvalues of any
real symmetric matrix are real numbers)

v

A real matrix A is said to be orthogonal if AAT = ATA=/, and a
complex matrix A is said to be unitary if AA* = A*A = 1.
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Theorem (Spectral theorem for real symmetric matrices)

Any real symmetric matrix is orthogonally similar to a diagonal matrix.
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Proof by induction.

n =1, trivial case.

Assume the result is true for matrices of order n — 1, and A be a
symmetric n X n matrix.

Let A be a real eigenvalue of A and x be a corresponding eigenvector
with unit length.

Let P be an orthogonal matrix with x as the first column.

Aoyl
0 C
(n—1) x (n—1) matrix C.

Then P71AP = , for some vector yT and some



Proof continued...

@ Since P71 = PT we have y™ =0 and C is symmetric.
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Proof continued...

@ Since P71 = PT we have y™ =0 and C is symmetric.

e By induction, we have C = W~1DW, where D is a diagonal matrix
and W is an orthogonal matrix.

e Set Q = diag(1, W), then Q and PQ are diagonal matrices.

o(PQ)-lA(PQ)=<(1) W01><3 2)(3 §/>:<3 g)

0J
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Spectral theorem for Hermitian matrices and Schur's
lemma

Theorem

Any Hermitian matrix is unitarily similar to a real diagonal matrix.
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Any Hermitian matrix is unitarily similar to a real diagonal matrix.

Proof.

Similar to spectral theorem real symmetric matrices.

24/31



25/31

Spectral decomposition

Theorem

Let A be an n x n Hermitian matrix with rank r. Then A can be
represented in each of the following equivalent forms:

© There exists a unitary matrix P and a real diagonal nonsingular

matrix A\ of rank r such that A= P ( ﬁ 8 ) P*.
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Spectral decomposition

Theorem
Let A be an n x n Hermitian matrix with rank r. Then A can be
represented in each of the following equivalent forms:

© There exists a unitary matrix P and a real diagonal nonsingular

matrix A\ of rank r such that A= P ( e ) P*.

0 0
@ There exists non-zero real numbers A1, A2, ..., A, and orthogonal
vectors u1, ..., uy such that A=Y ; A\juju}.

© There exists matrices R and A of orders n x r and r X r ,
respectively, such that A is real, diagonal and non-singular, R*R = |
and A = RAR*.
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Theorem (Schur, Jacobi) J

Every complex matrix A is unitarily similar to an upper triangular matrix.
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Every complex matrix A is unitarily similar to an upper triangular matrix.

Theorem (Schur, Jacobi) J

Similar to the proof of invertible similarity.

Remark

© True or False: Every real matrix is orthogonally similar to an upper
triangular matrix. Answer : False

@ Every real matrix A with real eigenvalues is orthogonally similar to an
upper triangular matrix.

26/31



Normal matrices

Suppose an n x n complex matrix A is unitarily similar to a diagonal matrix
Di.e., A= U*DU, where U is an unitary matrix. Then AA* = A*A.
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Normal matrices

Suppose an n x n complex matrix A is unitarily similar to a diagonal matrix
Di.e., A= U*DU, where U is an unitary matrix. Then AA* = A*A.
Definition

An n X n matrix is said to be normal, if AA* = A*A.

Theorem

An upper triangular matrix is normal if and only if it is diagonal.

Proof:
o Consider the k" diagonal entry of TT* and T*T,

k n
oIt =D Itk
i=1 j=k

@ By equating first diagonal entries of TT* and T*T, we can observe
the first row of T is zero expect the diagonal entry.

@ By a similar argument, we can conclude T must be diagonal.
27/31



Spectral theorem for Normal matrices

Theorem J

A matrix is unitarily similar to a diagonal matrix if and only if it is normal.
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Spectral theorem for Normal matrices

Theorem

A matrix is unitarily similar to a diagonal matrix if and only if it is normal.J

Proof:

o "If" part is clear.

@ Assume A is normal.

@ By Schur's lemma, A is unitarily similar to a upper triangular matrix
T.
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Spectral theorem for Normal matrices

Theorem

A matrix is unitarily similar to a diagonal matrix if and only if it is normal.J

Proof:
o "If" part is clear.

@ Assume A is normal.

@ By Schur's lemma, A is unitarily similar to a upper triangular matrix
T.

@ Now, T = U*AU, and T is normal.

@ So, T is diagonal, by previous theorem.
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Positive Semidefinite Matrices(PSD)

Let 8" denote the subspace of symmetric matrices in R™*". A€ S" is
positive semidefinite(PSD) if xT Ax > 0 for every x € R".
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Theorem
TFAE for A € R"™":
Q@ Ais PSD
@ There exists C € S" such that A = C?,
© There exists an n x n lower triangular matrix L such that A = LLT,
@ There exists an n X k real matrix B such that A= BB,

Proof

2),
3),
4
1).

e (1) implies
2

) Spectral theorem.
° (2)
e (3) implies
° (4)

implies QR-decomposition

, proof? Exercise!

~ o~ o~ o~
— = = =

4) implies
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Singular value decomposition(SVD)

Definition

A singular value decomposition of an m x n matrix A is a representation of
A

A in the following form: A= U 0 8 ) V*, where U and V are unitary

matrices and A is a diagonal matrix with positive diagonal entries.
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Singular value decomposition(SVD)

Definition

A singular value decomposition of an m x n matrix A is a representation of
A

A in the following form: A= U 0 8 V*, where U and V are unitary

matrices and A is a diagonal matrix with positive diagonal entries.

Theorem

Every matrix has a singular value decomposition.

Proof:
@ Let A be an m x n matrix with rank r.
@ Then the matrix AA* is Hermitian with rank r.
@ By Spectral theorem, we have AA* = RAR*, where
N = diag(di,...,d;) and R*R = I.
Take B = A*R, then B*B = A.
Define S = BG where G = diag(\/%_T17 ce %,)

Verify RG™1S* is a singular value decomposition for A.
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