Linear Algebra

M. Rajesh Kannan

Department of Mathematics, Indian Institute of Technology Kharagpur, email: rajeshkannan1.m@gmail.com, rajeshkannan0maths.iitkgp.ac.in

September 2019

References

A. Ramachandra Rao and P Bhimasankaram, Linear Algebra, Second edition, Hindustan book agency.

• Eigenvalues and eigenvectors,

- Eigenvalues and eigenvectors,
- Spectral representation of semi-simple matrices,

- Eigenvalues and eigenvectors,
- Spectral representation of semi-simple matrices,
- Spectral theorem symmetric matrices, Hermitian matrices and normal matrices,

- Eigenvalues and eigenvectors,
- Spectral representation of semi-simple matrices,
- Spectral theorem symmetric matrices, Hermitian matrices and normal matrices,
- Schur's lemma,

- Eigenvalues and eigenvectors,
- Spectral representation of semi-simple matrices,
- Spectral theorem symmetric matrices, Hermitian matrices and normal matrices,
- Schur's lemma,
- Singular value decomposition.

Definition

A complex number λ is said to be an eigenvalue of an $n \times n$ complex matrix A, if there exists a nonzero vector $x \in \mathbb{C}^n$ such that $Ax = \lambda x$.

Definition

A complex number λ is said to be an eigenvalue of an $n \times n$ complex matrix A, if there exists a nonzero vector $x \in \mathbb{C}^n$ such that $Ax = \lambda x$. The vector x is said to be an eigenvector associated with the eigenvalue λ .

Definition

A complex number λ is said to be an eigenvalue of an $n \times n$ complex matrix A, if there exists a nonzero vector $x \in \mathbb{C}^n$ such that $Ax = \lambda x$. The vector x is said to be an eigenvector associated with the eigenvalue λ .

Theorem

A complex number λ is an eigenvalue of a complex matrix A if and only if λ is a root of the characteristic polynomial $\det(A-\lambda I)=0$.

Definition

A complex number λ is said to be an eigenvalue of an $n \times n$ complex matrix A, if there exists a nonzero vector $x \in \mathbb{C}^n$ such that $Ax = \lambda x$. The vector x is said to be an eigenvector associated with the eigenvalue λ .

Theorem

A complex number λ is an eigenvalue of a complex matrix A if and only if λ is a root of the characteristic polynomial $det(A - \lambda I) = 0$.

Definition

Two $n \times n$ matrices A and B are said to be similar, if there exists an invertible matrix C such that $B = C^{-1}AC$.

Algebraic and geometric multiplicity

Definition

For an eigenvalue λ of A, the subspace of all eigenvectors of A corresponding to the eigenvalue λ together with the zero vector is called the eigenspace of A corresponding to the λ .

Algebraic and geometric multiplicity

Definition

For an eigenvalue λ of A, the subspace of all eigenvectors of A corresponding to the eigenvalue λ together with the zero vector is called the eigenspace of A corresponding to the λ .

Algebraic multiplicity of an eigenvalue λ of a matrix A is defined as the multiplicity of λ considered as a root of the characteristic polynomial. An eigenvalue λ is said to be simple, if its algebraic multiplicity is 1.

Algebraic and geometric multiplicity

Definition

For an eigenvalue λ of A, the subspace of all eigenvectors of A corresponding to the eigenvalue λ together with the zero vector is called the eigenspace of A corresponding to the λ .

Algebraic multiplicity of an eigenvalue λ of a matrix A is defined as the multiplicity of λ considered as a root of the characteristic polynomial. An eigenvalue λ is said to be simple, if its algebraic multiplicity is 1.

Geometric multiplicity of an eigenvalue λ of a matrix A is defined as the dimension of the eigenspace associated with λ . An eigenvalue λ is said to be regular, if its algebraic multiplicity is equal the geometric multiplicity.

A.M. > G.M.

Theorem

For any eigenvalue λ of A, the algebraic multiplicity of λ with respect to A is greater than or equal to the geometric multiplicity of λ , as an eigenvalue of A.

A.M. > G.M.

Theorem

For any eigenvalue λ of A, the algebraic multiplicity of λ with respect to A is greater than or equal to the geometric multiplicity of λ , as an eigenvalue of A.

Proof

• Let $\{x_1, \ldots, x_k\}$ be a basis for the eigenspace of λ , and let $\{x_1, x_2, \ldots, x_n\}$ be an extension to a basis of \mathbb{C}^n .

A.M. > G.M.

Theorem

For any eigenvalue λ of A, the algebraic multiplicity of λ with respect to A is greater than or equal to the geometric multiplicity of λ , as an eigenvalue of A.

- Let $\{x_1, \ldots, x_k\}$ be a basis for the eigenspace of λ , and let $\{x_1, x_2, \ldots, x_n\}$ be an extension to a basis of \mathbb{C}^n .
- Set $P = [x_1 \ x_2 \ \dots \ x_n].$



$A.M. \geq G.M.$

Theorem

For any eigenvalue λ of A, the algebraic multiplicity of λ with respect to A is greater than or equal to the geometric multiplicity of λ , as an eigenvalue of A.

- Let $\{x_1, \ldots, x_k\}$ be a basis for the eigenspace of λ , and let $\{x_1, x_2, \ldots, x_n\}$ be an extension to a basis of \mathbb{C}^n .
- Set $P = [x_1 \ x_2 \ \dots \ x_n].$
- Then P is nonsingular, and

$A.M. \geq G.M.$

Theorem

For any eigenvalue λ of A, the algebraic multiplicity of λ with respect to A is greater than or equal to the geometric multiplicity of λ , as an eigenvalue of A.

- Let $\{x_1, \ldots, x_k\}$ be a basis for the eigenspace of λ , and let $\{x_1, x_2, \ldots, x_n\}$ be an extension to a basis of \mathbb{C}^n .
- Set $P = [x_1 \ x_2 \ \dots \ x_n].$
- Then P is nonsingular, and

$$P^{-1}AP = P^{-1}[Ax_1 \ Ax_2 \ \dots \ Ax_k \ \dots \ Ax_n]$$
$$= P^{-1}[\lambda x_1 \ \lambda x_2 \ \dots \ \lambda x_k \ \dots \ Ax_n].$$

Proof cont...

Thus,

$$P^{-1}AP = \left(\begin{array}{cc} \lambda I_k & B \\ 0 & C \end{array}\right),$$

for some matrices B and C.

Proof cont...

Thus,

$$P^{-1}AP = \left(\begin{array}{cc} \lambda I_k & B \\ 0 & C \end{array}\right),$$

for some matrices B and C.

• Hence, $\chi_A(\alpha) = \chi_{P^{-1}AP}(\alpha) = (\lambda - \alpha)^k \chi_C(\alpha)$.

Proof cont...

Thus,

$$P^{-1}AP = \left(\begin{array}{cc} \lambda I_k & B \\ 0 & C \end{array}\right),$$

for some matrices B and C.

- Hence, $\chi_A(\alpha) = \chi_{P^{-1}AP}(\alpha) = (\lambda \alpha)^k \chi_C(\alpha)$.
- Thus, the algebraic multiplicity of λ is greater than or equal geometric multiplicity of λ .

• If λ is an eigenvalue of A with eigenvector x, then λ^k is an eigenvalue of A^k with eigenvector x.

- If λ is an eigenvalue of A with eigenvector x, then λ^k is an eigenvalue of A^k with eigenvector x.
- If $f(\alpha)$ is a polynomial and λ is an eigenvalue of A, then $f(\lambda)$ is an eigenvalue of f(A).

- If λ is an eigenvalue of A with eigenvector x, then λ^k is an eigenvalue of A^k with eigenvector x.
- If $f(\alpha)$ is a polynomial and λ is an eigenvalue of A, then $f(\lambda)$ is an eigenvalue of f(A).
- If $\lambda_1, \lambda_2, \ldots, \lambda_k$ are the distinct eigenvalues of A, and x_1, x_2, \ldots, x_k are the corresponding eigenvectors. Then the x_1, x_2, \ldots, x_k are linearly independent.

- If λ is an eigenvalue of A with eigenvector x, then λ^k is an eigenvalue of A^k with eigenvector x.
- If $f(\alpha)$ is a polynomial and λ is an eigenvalue of A, then $f(\lambda)$ is an eigenvalue of f(A).
- If $\lambda_1, \lambda_2, \ldots, \lambda_k$ are the distinct eigenvalues of A, and x_1, x_2, \ldots, x_k are the corresponding eigenvectors. Then the x_1, x_2, \ldots, x_k are linearly independent.
- If λ is a nonzero eigenvalue of a square matrix AB(A and B need not be square), then λ is an eigenvalue of the matrix BA with the same algebraic and geometric multiplicities.

- If λ is an eigenvalue of A with eigenvector x, then λ^k is an eigenvalue of A^k with eigenvector x.
- If $f(\alpha)$ is a polynomial and λ is an eigenvalue of A, then $f(\lambda)$ is an eigenvalue of f(A).
- If $\lambda_1, \lambda_2, \ldots, \lambda_k$ are the distinct eigenvalues of A, and x_1, x_2, \ldots, x_k are the corresponding eigenvectors. Then the x_1, x_2, \ldots, x_k are linearly independent.
- If λ is a nonzero eigenvalue of a square matrix AB(A) and B need not be square), then λ is an eigenvalue of the matrix BA with the same algebraic and geometric multiplicities. If x_1, x_2, \ldots, x_r are linearly independent eigenvectors of AB corresponding to λ , then Bx_1, \ldots, Bx_r are linearly independent eigenvectors of BA corresponding to λ .

Theorem

Every matrix A is similar to an upper triangular matrix over \mathbb{C} .

Theorem

Every matrix A is similar to an upper triangular matrix over \mathbb{C} .



Theorem

Every matrix A is similar to an upper triangular matrix over \mathbb{C} .

Proof

Proof by induction.

Theorem

Every matrix A is similar to an upper triangular matrix over \mathbb{C} .

Proof

• Proof by induction. If n = 1, then we are done.

Theorem

Every matrix A is similar to an upper triangular matrix over \mathbb{C} .

- Proof by induction. If n = 1, then we are done.
- ullet Assume the result is true for (n-1) imes (n-1) matrices.

Theorem

Every matrix A is similar to an upper triangular matrix over \mathbb{C} .

- Proof by induction. If n = 1, then we are done.
- Assume the result is true for $(n-1) \times (n-1)$ matrices.
- Let A be an $n \times n$ matrix, and λ be an eigenvalue of A with eigenvector x.

Theorem

Every matrix A is similar to an upper triangular matrix over \mathbb{C} .

- Proof by induction. If n = 1, then we are done.
- Assume the result is true for $(n-1) \times (n-1)$ matrices.
- Let A be an $n \times n$ matrix, and λ be an eigenvalue of A with eigenvector x.
- Let P be a nonsingular matrix with x as the first column.

Theorem

Every matrix A is similar to an upper triangular matrix over \mathbb{C} .

- Proof by induction. If n = 1, then we are done.
- Assume the result is true for $(n-1) \times (n-1)$ matrices.
- Let A be an $n \times n$ matrix, and λ be an eigenvalue of A with eigenvector x.
- Let P be a nonsingular matrix with x as the first column.
- Then, $P^{-1}AP = \begin{pmatrix} \lambda & y^T \\ 0 & C \end{pmatrix}$, for some $1 \times n 1$ vector y^T and $(n-1) \times (n-1)$ matrix C.

Theorem

Every matrix A is similar to an upper triangular matrix over \mathbb{C} .

- Proof by induction. If n = 1, then we are done.
- Assume the result is true for $(n-1) \times (n-1)$ matrices.
- Let A be an $n \times n$ matrix, and λ be an eigenvalue of A with eigenvector x.
- Let P be a nonsingular matrix with x as the first column.
- Then, $P^{-1}AP = \begin{pmatrix} \lambda & y^T \\ 0 & C \end{pmatrix}$, for some $1 \times n 1$ vector y^T and $(n-1) \times (n-1)$ matrix C.
- By induction, there exists a non-singular matrix W such that $T = W^{-1}CW$ is upper triangular.

Weaker version of Schur's lemma

Theorem

Every matrix A is similar to an upper triangular matrix over \mathbb{C} .

- Proof by induction. If n = 1, then we are done.
- Assume the result is true for $(n-1) \times (n-1)$ matrices.
- Let A be an $n \times n$ matrix, and λ be an eigenvalue of A with eigenvector x.
- Let P be a nonsingular matrix with x as the first column.
- Then, $P^{-1}AP = \begin{pmatrix} \lambda & y^T \\ 0 & C \end{pmatrix}$, for some $1 \times n 1$ vector y^T and $(n-1) \times (n-1)$ matrix C.
- By induction, there exists a non-singular matrix W such that $T=W^{-1}CW$ is upper triangular.
- Set $Q = \begin{pmatrix} 1 & 0 \\ 0 & W \end{pmatrix}$.

$$\bullet (PQ)^{-1}A(PQ) = \begin{pmatrix} 1 & 0 \\ 0 & W^{-1} \end{pmatrix} \begin{pmatrix} \lambda & y^T \\ 0 & C \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & W \end{pmatrix} = \begin{pmatrix} \lambda & y^T W \\ 0 & T \end{pmatrix},$$

•
$$(PQ)^{-1}A(PQ) = \begin{pmatrix} 1 & 0 \\ 0 & W^{-1} \end{pmatrix} \begin{pmatrix} \lambda & y^T \\ 0 & C \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & W \end{pmatrix} = \begin{pmatrix} \lambda & y^T W \\ 0 & T \end{pmatrix}$$
, which is upper triangular.

Corollary

Let $\lambda_1, \lambda_2, \dots, \lambda_k$ be the eigenvalues of the matrix A and let $f(\alpha)$ be a polynomial. Then $f(\lambda_1), f(\lambda_2), \dots, f(\lambda_k)$ are the eigenvalues of f(A).

Corollary

Let $\lambda_1, \lambda_2, \ldots, \lambda_k$ be the eigenvalues of the matrix A and let $f(\alpha)$ be a polynomial. Then $f(\lambda_1), f(\lambda_2), \ldots, f(\lambda_k)$ are the eigenvalues of f(A).

Corollary

Let $\lambda_1, \lambda_2, \dots, \lambda_k$ be the eigenvalues of the matrix A and let $f(\alpha)$ be a polynomial. Then $f(\lambda_1), f(\lambda_2), \dots, f(\lambda_k)$ are the eigenvalues of f(A).

Proof Exercise!

Definition

A polynomial $f(\lambda)$ is said to annihilate A if f(A) = 0.

Definition

A polynomial $f(\lambda)$ is said to annihilate A if f(A) = 0.

Theorem

For every matrix A, the characteristic polynomial of A annihilates A.

Proof.

• By weak Schur's lemma, $T = PAP^{-1}$ for some invertible matrix P and upper triangular matrix T.

Definition

A polynomial $f(\lambda)$ is said to annihilate A if f(A) = 0.

Theorem

For every matrix A, the characteristic polynomial of A annihilates A.

- By weak Schur's lemma, $T = PAP^{-1}$ for some invertible matrix P and upper triangular matrix T.
- Let $W_k = \prod_{i=1}^k (T t_{ii}I)$.

Definition

A polynomial $f(\lambda)$ is said to annihilate A if f(A) = 0.

Theorem

For every matrix A, the characteristic polynomial of A annihilates A.

- By weak Schur's lemma, $T = PAP^{-1}$ for some invertible matrix P and upper triangular matrix T.
- Let $W_k = \prod_{i=1}^k (T t_{ii}I)$.
- Then first k columns of W_k are zero.

Definition

A polynomial $f(\lambda)$ is said to annihilate A if f(A) = 0.

Theorem

For every matrix A, the characteristic polynomial of A annihilates A.

- By weak Schur's lemma, $T = PAP^{-1}$ for some invertible matrix P and upper triangular matrix T.
- Let $W_k = \prod_{i=1}^k (T t_{ii}I)$.
- Then first k columns of W_k are zero. induction.

Definition

A polynomial $f(\lambda)$ is said to annihilate A if f(A) = 0.

Theorem

For every matrix A, the characteristic polynomial of A annihilates A.

- By weak Schur's lemma, $T = PAP^{-1}$ for some invertible matrix P and upper triangular matrix T.
- Let $W_k = \prod_{i=1}^k (T t_{ii}I)$.
- Then first k columns of W_k are zero. induction.
- k = 1 trivial.

Definition

A polynomial $f(\lambda)$ is said to annihilate A if f(A) = 0.

Theorem

For every matrix A, the characteristic polynomial of A annihilates A.

- By weak Schur's lemma, $T = PAP^{-1}$ for some invertible matrix P and upper triangular matrix T.
- Let $W_k = \prod_{i=1}^k (T t_{ii}I)$.
- Then first k columns of W_k are zero. induction.
- k = 1 trivial.
- Assume the result is true for k-1.

Proof.

• Let $B = W_{k-1}$ and $C = T - t_{kk}I$.

- Let $B = W_{k-1}$ and $C = T t_{kk}I$.
- Then, for $l \le k$, we have $(W_k)_{il} = \sum_{j=1}^n b_{ij} c_{jl} = 0$.(Reason: $b_{ij} = 0$ if $j \le k-1$ and $c_{il} = 0$ if $j \ge k$)

- Let $B = W_{k-1}$ and $C = T t_{kk}I$.
- Then, for $l \le k$, we have $(W_k)_{il} = \sum_{j=1}^n b_{ij} c_{jl} = 0$.(Reason: $b_{ij} = 0$ if $j \le k-1$ and $c_{il} = 0$ if $j \ge k$)
- Thus first k columns of W_k are zero, and hence $W_n = 0$.

- Let $B = W_{k-1}$ and $C = T t_{kk}I$.
- Then, for $l \le k$, we have $(W_k)_{il} = \sum_{j=1}^n b_{ij} c_{jl} = 0$.(Reason: $b_{ij} = 0$ if $j \le k-1$ and $c_{il} = 0$ if $j \ge k$)
- Thus first k columns of W_k are zero, and hence $W_n = 0$.
- $0 = f(T) = P^{-1}f(A)P$.

Minimal polynomial

Definition

The monic polynomial of the least degree which annihilates A is called the minimal polynomial of A.

Minimal polynomial

Definition

The monic polynomial of the least degree which annihilates A is called the minimal polynomial of A.

Theorem

The minimal polynomial of A divides every polynomial which annihilates A.

Proof.

Division algorithm.

The minimal polynomial of A divides the characteristic polynomial of A.

The minimal polynomial of A divides the characteristic polynomial of A.A complex number α is a root of the minimal polynomial if and only if α is a root of the characteristic polynomial.

The minimal polynomial of A divides the characteristic polynomial of A.A complex number α is a root of the minimal polynomial if and only if α is a root of the characteristic polynomial.

Proof.

• Proof of "if" part is clear.

The minimal polynomial of A divides the characteristic polynomial of A.A complex number α is a root of the minimal polynomial if and only if α is a root of the characteristic polynomial.

Proof.

Proof of "if" part is clear. Proof of converse.

The minimal polynomial of A divides the characteristic polynomial of A.A complex number α is a root of the minimal polynomial if and only if α is a root of the characteristic polynomial.

- Proof of "if" part is clear. Proof of converse.
- Let $\mu(z)$ be the minimal polynomial of A.

The minimal polynomial of A divides the characteristic polynomial of A.A complex number α is a root of the minimal polynomial if and only if α is a root of the characteristic polynomial.

- Proof of "if" part is clear. Proof of converse.
- Let $\mu(z)$ be the minimal polynomial of A.
- If λ is a characteristic root of A, then $\mu(A)x = \mu(\lambda)x$, where x is the eigenvector corresponding to the eigenvalue λ of A.

The minimal polynomial of A divides the characteristic polynomial of A.A complex number α is a root of the minimal polynomial if and only if α is a root of the characteristic polynomial.

- Proof of "if" part is clear. Proof of converse.
- Let $\mu(z)$ be the minimal polynomial of A.
- If λ is a characteristic root of A, then $\mu(A)x = \mu(\lambda)x$, where x is the eigenvector corresponding to the eigenvalue λ of A.
- As $\mu(A) = 0$, so $\mu(\lambda) = 0$.

Definition

A matrix is said to be semi-simple or diagonalizable if it is similar to a diagonal matrix.

Definition

A matrix is said to be semi-simple or diagonalizable if it is similar to a diagonal matrix.

Remark

If A is semi-simple and is similar to the diagonal matrix diagonal entries are d_1, d_2, \ldots, d_n , then the eigenvalues of the matrix A are d_1, d_2, \ldots, d_n .

Definition

A matrix is said to be semi-simple or diagonalizable if it is similar to a diagonal matrix.

Remark

If A is semi-simple and is similar to the diagonal matrix diagonal entries are d_1, d_2, \ldots, d_n , then the eigenvalues of the matrix A are d_1, d_2, \ldots, d_n .

Observation

If $P^{-1}AP = D$ is a diagonal matrix, then AP = DP.

Definition

A matrix is said to be semi-simple or diagonalizable if it is similar to a diagonal matrix.

Remark

If A is semi-simple and is similar to the diagonal matrix diagonal entries are d_1, d_2, \ldots, d_n , then the eigenvalues of the matrix A are d_1, d_2, \ldots, d_n .

Observation

If $P^{-1}AP = D$ is a diagonal matrix, then AP = DP. We can see that, d_i is an eigenvalue of A with i^{th} column of P as the corresponding eigenvector.

Definition

A matrix is said to be semi-simple or diagonalizable if it is similar to a diagonal matrix.

Remark

If A is semi-simple and is similar to the diagonal matrix diagonal entries are d_1, d_2, \ldots, d_n , then the eigenvalues of the matrix A are d_1, d_2, \ldots, d_n .

Observation

If $P^{-1}AP = D$ is a diagonal matrix, then AP = DP. We can see that, d_i is an eigenvalue of A with i^{th} column of P as the corresponding eigenvector. Conversely, if A has n linear independent eigenvectors, and P is the matrix formed with these vectors as eigenvectors, then $P^{-1}AP$ is diagonal.

Theorem

The following statements about an $n \times n$ matrix A are equivalent:

Theorem

The following statements about an $n \times n$ matrix A are equivalent:

A is semi-simple,

Theorem

The following statements about an $n \times n$ matrix A are equivalent:

- A is semi-simple,
- 2 algebraic multiplicity of every eigenvalue is equal to the geometric multiplicity of it,

Theorem

The following statements about an $n \times n$ matrix A are equivalent:

- A is semi-simple,
- 2 algebraic multiplicity of every eigenvalue is equal to the geometric multiplicity of it,
- A has n linearly independent eigenvectors

Theorem

The following statements about an $n \times n$ matrix A are equivalent:

- A is semi-simple,
- algebraic multiplicity of every eigenvalue is equal to the geometric multiplicity of it,
- A has n linearly independent eigenvectors
- the minimal polynomial of A is a product of distinct linear factors.

Theorem

The following statements about an $n \times n$ matrix A are equivalent:

- A is semi-simple,
- 2 algebraic multiplicity of every eigenvalue is equal to the geometric multiplicity of it,
- A has n linearly independent eigenvectors
- the minimal polynomial of A is a product of distinct linear factors.((section 8.5) for minimal polynomial)

Theorem

The following statements about an $n \times n$ matrix A are equivalent:

- A is semi-simple,
- algebraic multiplicity of every eigenvalue is equal to the geometric multiplicity of it,
- A has n linearly independent eigenvectors
- the minimal polynomial of A is a product of distinct linear factors.((section 8.5) for minimal polynomial)

Proof

• (1) implies (2) is clear.

Theorem

The following statements about an $n \times n$ matrix A are equivalent:

- A is semi-simple,
- 2 algebraic multiplicity of every eigenvalue is equal to the geometric multiplicity of it,
- A has n linearly independent eigenvectors
- the minimal polynomial of A is a product of distinct linear factors.((section 8.5) for minimal polynomial)

- (1) implies (2) is clear.
- (2) implies (3) is clear.

Theorem

The following statements about an $n \times n$ matrix A are equivalent:

- A is semi-simple,
- algebraic multiplicity of every eigenvalue is equal to the geometric multiplicity of it,
- A has n linearly independent eigenvectors
- the minimal polynomial of A is a product of distinct linear factors.((section 8.5) for minimal polynomial)

- (1) implies (2) is clear.
- (2) implies (3) is clear.
- (2) implies (1) follows from the observation.

Applications:

• If an $n \times n$ matrix A has n distinct eigenvalues, then it is diagonalizable.

Applications:

- If an $n \times n$ matrix A has n distinct eigenvalues, then it is diagonalizable.
- ② Any idempotent matrix is diagonalizable $(P^2 = P)$.

Applications:

- If an $n \times n$ matrix A has n distinct eigenvalues, then it is diagonalizable.
- ② Any idempotent matrix is diagonalizable($P^2 = P$).
- **3** Any nonzero nilpotent matrix is not diagonalizable $(A^k = 0$, for some integer k).

Spectral representation for semi-simple matrices

Theorem

The following statements about an $n \times n$ matrix A are equivalent:

- 1 A is semi-simple and has rank r,
- ② there exists a non-singular matrix P of order n, and a diagonal nonsingular matrix Δ of order r such that $A = P \begin{pmatrix} \Delta & 0 \\ 0 & 0 \end{pmatrix} P^{-1}$,
- **1** There exists nonzero scalars $\gamma_1, \gamma_2, \ldots, \gamma_r$ and vectors u_1, \ldots, u_r and v_1, \ldots, v_r in \mathbb{C}^n such that $v_i^T u_j = \delta_{ij}$ for all i, j and

$$A = \sum_{i=1}^{r} \gamma_i u_i v_i^T$$

• (1) implies (2). Permutation of *D*.

- (1) implies (2). Permutation of D.
- (2) implies (1). Trivial.

- (1) implies (2). Permutation of D.
- (2) implies (1). Trivial.
- (2) implies (3). Set $\delta_i = i^{th}$ diagonal entry of Δ , $u_i = i^{th}$ column of P, and $v_i^T = i^{th}$ row of P^{-1} .

- (1) implies (2). Permutation of D.
- (2) implies (1). Trivial.
- (2) implies (3). Set $\delta_i = i^{th}$ diagonal entry of Δ , $u_i = i^{th}$ column of P, and $v_i^T = i^{th}$ row of P^{-1} .
- (3) implies (2).

- (1) implies (2). Permutation of D.
- (2) implies (1). Trivial.
- (2) implies (3). Set $\delta_i = i^{th}$ diagonal entry of Δ , $u_i = i^{th}$ column of P, and $v_i^T = i^{th}$ row of P^{-1} .
- (3) implies (2). Exercise!

Definition

An $n \times n$ matrix is said to be symmetric, if $A^T = A$.

Definition

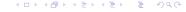
An $n \times n$ matrix is said to be symmetric, if $A^T = A$. An $n \times n$ matrix is said to be Hermitian, if $A^* = A$.

Definition

An $n \times n$ matrix is said to be symmetric, if $A^T = A$. An $n \times n$ matrix is said to be Hermitian, if $A^* = A$.

Theorem

Eigenvalues of any Hermitian matrix are real numbers. (Eigenvalues of any real symmetric matrix are real numbers)



Definition

An $n \times n$ matrix is said to be symmetric, if $A^T = A$. An $n \times n$ matrix is said to be Hermitian, if $A^* = A$.

Theorem

Eigenvalues of any Hermitian matrix are real numbers. (Eigenvalues of any real symmetric matrix are real numbers)

A real matrix A is said to be orthogonal if $AA^T = A^TA = I$, and a complex matrix A is said to be unitary if $AA^* = A^*A = I$.



Any real symmetric matrix is orthogonally similar to a diagonal matrix.

Proof by induction.

- Proof by induction.
- n = 1, trivial case.

- Proof by induction.
- n = 1, trivial case.
- Assume the result is true for matrices of order n-1, and A be a symmetric $n \times n$ matrix.

- Proof by induction.
- n = 1, trivial case.
- Assume the result is true for matrices of order n-1, and A be a symmetric $n \times n$ matrix.
- Let λ be a real eigenvalue of A and x be a corresponding eigenvector with unit length.

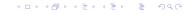
- Proof by induction.
- n=1, trivial case.
- Assume the result is true for matrices of order n-1, and A be a symmetric $n \times n$ matrix.
- Let λ be a real eigenvalue of A and x be a corresponding eigenvector with unit length.
- Let P be an orthogonal matrix with x as the first column.

- Proof by induction.
- n = 1, trivial case.
- Assume the result is true for matrices of order n-1, and A be a symmetric $n \times n$ matrix.
- Let λ be a real eigenvalue of A and x be a corresponding eigenvector with unit length.
- Let P be an orthogonal matrix with x as the first column.
- Then $P^{-1}AP = \begin{pmatrix} \lambda & y^T \\ 0 & C \end{pmatrix}$, for some vector y^T and some $(n-1) \times (n-1)$ matrix C.

• Since $P^{-1} = P^T$, we have $y^T = 0$ and C is symmetric.

- Since $P^{-1} = P^T$, we have $y^T = 0$ and C is symmetric.
- By induction, we have $C = W^{-1}DW$, where D is a diagonal matrix and W is an orthogonal matrix.

- Since $P^{-1} = P^T$, we have $y^T = 0$ and C is symmetric.
- By induction, we have $C = W^{-1}DW$, where D is a diagonal matrix and W is an orthogonal matrix.
- Set Q = diag(1, W), then Q and PQ are diagonal matrices.



- Since $P^{-1} = P^T$, we have $y^T = 0$ and C is symmetric.
- By induction, we have $C = W^{-1}DW$, where D is a diagonal matrix and W is an orthogonal matrix.
- Set Q = diag(1, W), then Q and PQ are diagonal matrices.

$$\bullet \ (PQ)^{-1}A(PQ) = \left(\begin{array}{cc} 1 & 0 \\ 0 & W^{-1} \end{array}\right) \left(\begin{array}{cc} \lambda & 0 \\ 0 & C \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & W \end{array}\right) = \left(\begin{array}{cc} \lambda & 0 \\ 0 & D \end{array}\right)$$

Spectral theorem for Hermitian matrices and Schur's lemma

Theorem

Any Hermitian matrix is unitarily similar to a real diagonal matrix.

Spectral theorem for Hermitian matrices and Schur's lemma

Theorem

Any Hermitian matrix is unitarily similar to a real diagonal matrix.

Proof.

Similar to spectral theorem real symmetric matrices.

Spectral decomposition

Theorem

Let A be an $n \times n$ Hermitian matrix with rank r. Then A can be represented in each of the following equivalent forms:

1 There exists a unitary matrix P and a real diagonal nonsingular matrix Δ of rank r such that $A = P\begin{pmatrix} \Delta & 0 \\ 0 & 0 \end{pmatrix} P^*$.

Spectral decomposition

Theorem

Let A be an $n \times n$ Hermitian matrix with rank r. Then A can be represented in each of the following equivalent forms:

- There exists a unitary matrix P and a real diagonal nonsingular matrix Δ of rank r such that $A = P\begin{pmatrix} \Delta & 0 \\ 0 & 0 \end{pmatrix} P^*$.
- ② There exists non-zero real numbers $\lambda_1, \lambda_2, \dots, \lambda_r$ and orthogonal vectors u_1, \dots, u_r such that $A = \sum_{i=1}^n \lambda_i u_i u_i^*$.

Spectral decomposition

Theorem

Let A be an $n \times n$ Hermitian matrix with rank r. Then A can be represented in each of the following equivalent forms:

- There exists a unitary matrix P and a real diagonal nonsingular matrix Δ of rank r such that $A = P \begin{pmatrix} \Delta & 0 \\ 0 & 0 \end{pmatrix} P^*$.
- **2** There exists non-zero real numbers $\lambda_1, \lambda_2, \dots, \lambda_r$ and orthogonal vectors u_1, \dots, u_r such that $A = \sum_{i=1}^n \lambda_i u_i u_i^*$.
- **3** There exists matrices R and Δ of orders $n \times r$ and $r \times r$, respectively, such that Δ is real, diagonal and non-singular, $R^*R = I$ and $A = R\Delta R^*$.

Theorem (Schur, Jacobi)

Every complex matrix A is unitarily similar to an upper triangular matrix.

Theorem (Schur, Jacobi)

Every complex matrix A is unitarily similar to an upper triangular matrix.

Similar to the proof of invertible similarity.

Theorem (Schur, Jacobi)

Every complex matrix A is unitarily similar to an upper triangular matrix.

Similar to the proof of invertible similarity.

Remark

• True or False: Every real matrix is orthogonally similar to an upper triangular matrix.

Theorem (Schur, Jacobi)

Every complex matrix A is unitarily similar to an upper triangular matrix.

Similar to the proof of invertible similarity.

Remark

• True or False: Every real matrix is orthogonally similar to an upper triangular matrix. Answer: False

Theorem (Schur, Jacobi)

Every complex matrix A is unitarily similar to an upper triangular matrix.

Similar to the proof of invertible similarity.

Remark

- True or False: Every real matrix is orthogonally similar to an upper triangular matrix. Answer: False
- 2 Every real matrix A with real eigenvalues is orthogonally similar to an upper triangular matrix.

Suppose an $n \times n$ complex matrix A is unitarily similar to a diagonal matrix D i.e., $A = U^*DU$, where U is an unitary matrix. Then $AA^* = A^*A$.

Suppose an $n \times n$ complex matrix A is unitarily similar to a diagonal matrix D i.e., $A = U^*DU$, where U is an unitary matrix. Then $AA^* = A^*A$.

Definition

An $n \times n$ matrix is said to be normal, if $AA^* = A^*A$.

Suppose an $n \times n$ complex matrix A is unitarily similar to a diagonal matrix D i.e., $A = U^*DU$, where U is an unitary matrix. Then $AA^* = A^*A$.

Definition

An $n \times n$ matrix is said to be normal, if $AA^* = A^*A$.

Theorem

An upper triangular matrix is normal if and only if it is diagonal.

Suppose an $n \times n$ complex matrix A is unitarily similar to a diagonal matrix D i.e., $A = U^*DU$, where U is an unitary matrix. Then $AA^* = A^*A$.

Definition

An $n \times n$ matrix is said to be normal, if $AA^* = A^*A$.

Theorem

An upper triangular matrix is normal if and only if it is diagonal.

Proof:

• Consider the k^{th} diagonal entry of TT^* and T^*T ,

$$\sum_{i=1}^{k} |t_{ik}^2| = \sum_{j=k}^{n} |t_{kj}^2|.$$

Suppose an $n \times n$ complex matrix A is unitarily similar to a diagonal matrix D i.e., $A = U^*DU$, where U is an unitary matrix. Then $AA^* = A^*A$.

Definition

An $n \times n$ matrix is said to be normal, if $AA^* = A^*A$.

Theorem

An upper triangular matrix is normal if and only if it is diagonal.

Proof:

• Consider the k^{th} diagonal entry of TT^* and T^*T ,

$$\sum_{i=1}^{k} |t_{ik}^2| = \sum_{j=k}^{n} |t_{kj}^2|.$$

• By equating first diagonal entries of TT^* and T^*T , we can observe the first row of T is zero expect the diagonal entry.

Suppose an $n \times n$ complex matrix A is unitarily similar to a diagonal matrix D i.e., $A = U^*DU$, where U is an unitary matrix. Then $AA^* = A^*A$.

Definition

An $n \times n$ matrix is said to be normal, if $AA^* = A^*A$.

Theorem

An upper triangular matrix is normal if and only if it is diagonal.

Proof:

• Consider the k^{th} diagonal entry of TT^* and T^*T ,

$$\sum_{i=1}^{k} |t_{ik}^2| = \sum_{i=k}^{n} |t_{kj}^2|.$$

- By equating first diagonal entries of TT^* and T^*T , we can observe the first row of T is zero expect the diagonal entry.
- ullet By a similar argument, we can conclude T must be diagonal.

Theorem

A matrix is unitarily similar to a diagonal matrix if and only if it is normal.

Theorem

A matrix is unitarily similar to a diagonal matrix if and only if it is normal.

Proof:

• "If" part is clear.

Theorem

A matrix is unitarily similar to a diagonal matrix if and only if it is normal.

- "If" part is clear.
- Assume A is normal.

Theorem

A matrix is unitarily similar to a diagonal matrix if and only if it is normal.

- "If" part is clear.
- Assume A is normal.
- By Schur's lemma, A is unitarily similar to a upper triangular matrix T.

Theorem

A matrix is unitarily similar to a diagonal matrix if and only if it is normal.

- "If" part is clear.
- Assume A is normal.
- By Schur's lemma, A is unitarily similar to a upper triangular matrix
 T.
- Now, $T = U^*AU$, and T is normal.

Theorem

A matrix is unitarily similar to a diagonal matrix if and only if it is normal.

- "If" part is clear.
- Assume A is normal.
- By Schur's lemma, A is unitarily similar to a upper triangular matrix
 T.
- Now, $T = U^*AU$, and T is normal.
- So, T is diagonal, by previous theorem.

Positive Semidefinite Matrices(PSD)

Let S^n denote the subspace of symmetric matrices in $\mathbb{R}^{n\times n}$. $A\in S^n$ is positive semidefinite(PSD) if $x^TAx\geq 0$ for every $x\in \mathbb{R}^n$.

- A is PSD
- ② There exists $C \in S^n$ such that $A = C^2$,

- A is PSD
- ② There exists $C \in S^n$ such that $A = C^2$,
- **1** There exists an $n \times n$ lower triangular matrix L such that $A = LL^T$,

- A is PSD
- ② There exists $C \in S^n$ such that $A = C^2$,
- **1** There exists an $n \times n$ lower triangular matrix L such that $A = LL^T$,
- There exists an $n \times k$ real matrix B such that $A = BB^T$,

TFAE for $A \in \mathbb{R}^{n \times n}$:

- A is PSD
- ② There exists $C \in S^n$ such that $A = C^2$,
- **1** There exists an $n \times n$ lower triangular matrix L such that $A = LL^T$,
- There exists an $n \times k$ real matrix B such that $A = BB^T$,

Proof

• (1) implies (2), Spectral theorem.

TFAE for $A \in \mathbb{R}^{n \times n}$:

- A is PSD
- ② There exists $C \in S^n$ such that $A = C^2$,
- **1** There exists an $n \times n$ lower triangular matrix L such that $A = LL^T$,
- There exists an $n \times k$ real matrix B such that $A = BB^T$,

- (1) implies (2), Spectral theorem.
- (2) implies (3), QR-decomposition

TFAE for $A \in \mathbb{R}^{n \times n}$:

- A is PSD
- 2 There exists $C \in S^n$ such that $A = C^2$,
- **1** There exists an $n \times n$ lower triangular matrix L such that $A = LL^T$,
- There exists an $n \times k$ real matrix B such that $A = BB^T$,

- (1) implies (2), Spectral theorem.
- (2) implies (3), QR-decomposition
- (3) implies (4),

TFAE for $A \in \mathbb{R}^{n \times n}$:

- A is PSD
- ② There exists $C \in S^n$ such that $A = C^2$,
- **1** There exists an $n \times n$ lower triangular matrix L such that $A = LL^T$,
- There exists an $n \times k$ real matrix B such that $A = BB^T$,

- (1) implies (2), Spectral theorem.
- (2) implies (3), QR-decomposition
- (3) implies (4), proof? Exercise!

TFAE for $A \in \mathbb{R}^{n \times n}$:

- A is PSD
- ② There exists $C \in S^n$ such that $A = C^2$,
- **1** There exists an $n \times n$ lower triangular matrix L such that $A = LL^T$,
- There exists an $n \times k$ real matrix B such that $A = BB^T$,

- (1) implies (2), Spectral theorem.
- (2) implies (3), QR-decomposition
- (3) implies (4), proof? Exercise!
- (4) implies (1).

Definition

A singular value decomposition of an $m \times n$ matrix A is a representation of A in the following form: $A = U \begin{pmatrix} \Delta & 0 \\ 0 & 0 \end{pmatrix} V^*$, where U and V are unitary matrices and Δ is a diagonal matrix with positive diagonal entries.

Definition

A singular value decomposition of an $m \times n$ matrix A is a representation of A in the following form: $A = U \begin{pmatrix} \Delta & 0 \\ 0 & 0 \end{pmatrix} V^*$, where U and V are unitary matrices and Δ is a diagonal matrix with positive diagonal entries.

Theorem

Every matrix has a singular value decomposition.

Definition

A singular value decomposition of an $m \times n$ matrix A is a representation of A in the following form: $A = U \begin{pmatrix} \Delta & 0 \\ 0 & 0 \end{pmatrix} V^*$, where U and V are unitary matrices and Δ is a diagonal matrix with positive diagonal entries.

Theorem

Every matrix has a singular value decomposition.

Proof:

• Let A be an $m \times n$ matrix with rank r.

Definition

A singular value decomposition of an $m \times n$ matrix A is a representation of A in the following form: $A = U \begin{pmatrix} \Delta & 0 \\ 0 & 0 \end{pmatrix} V^*$, where U and V are unitary matrices and Δ is a diagonal matrix with positive diagonal entries.

Theorem

Every matrix has a singular value decomposition.

- Let A be an $m \times n$ matrix with rank r.
- Then the matrix AA^* is Hermitian with rank r.

Definition

A singular value decomposition of an $m \times n$ matrix A is a representation of A in the following form: $A = U \begin{pmatrix} \Delta & 0 \\ 0 & 0 \end{pmatrix} V^*$, where U and V are unitary matrices and Δ is a diagonal matrix with positive diagonal entries.

Theorem

Every matrix has a singular value decomposition.

- Let A be an $m \times n$ matrix with rank r.
- Then the matrix AA^* is Hermitian with rank r.
- By Spectral theorem, we have $AA^* = R\Lambda R^*$, where $\Lambda = diag(d_1, \ldots, d_r)$ and $R^*R = I$.

Definition

A singular value decomposition of an $m \times n$ matrix A is a representation of A in the following form: $A = U \begin{pmatrix} \Delta & 0 \\ 0 & 0 \end{pmatrix} V^*$, where U and V are unitary matrices and Δ is a diagonal matrix with positive diagonal entries.

Theorem

Every matrix has a singular value decomposition.

- Let A be an $m \times n$ matrix with rank r.
- Then the matrix AA^* is Hermitian with rank r.
- By Spectral theorem, we have $AA^* = R\Lambda R^*$, where $\Lambda = diag(d_1, \ldots, d_r)$ and $R^*R = I$.
- Take $B = A^*R$, then $B^*B = \Lambda$.

Definition

A singular value decomposition of an $m \times n$ matrix A is a representation of A in the following form: $A = U \begin{pmatrix} \Delta & 0 \\ 0 & 0 \end{pmatrix} V^*$, where U and V are unitary matrices and Δ is a diagonal matrix with positive diagonal entries.

Theorem

Every matrix has a singular value decomposition.

- Let A be an $m \times n$ matrix with rank r.
- Then the matrix AA^* is Hermitian with rank r.
- By Spectral theorem, we have $AA^* = R\Lambda R^*$, where $\Lambda = diag(d_1, \ldots, d_r)$ and $R^*R = I$.
- Take $B = A^*R$, then $B^*B = \Lambda$.
- Define S = BG where $G = diag(\frac{1}{\sqrt{d_1}}, \dots, \frac{1}{\sqrt{d_r}})$.



Definition

A singular value decomposition of an $m \times n$ matrix A is a representation of A in the following form: $A=U\left(egin{array}{cc} \Delta & 0 \\ 0 & 0 \end{array}\right)V^*$, where U and V are unitary matrices and Δ is a diagonal matrix with positive diagonal entries.

Theorem

Every matrix has a singular value decomposition.

- Let A be an $m \times n$ matrix with rank r.
- Then the matrix AA^* is Hermitian with rank r.
- By Spectral theorem, we have $AA^* = R\Lambda R^*$, where $\Lambda = diag(d_1, \ldots, d_r)$ and $R^*R = I$.
- Take $B = A^*R$, then $B^*B = \Lambda$.
- Define S = BG where $G = diag(\frac{1}{\sqrt{d_1}}, \dots, \frac{1}{\sqrt{d_r}})$.
- Verify $RG^{-1}S^*$ is a singular value decomposition for A.