
Linear Algebra

M. Rajesh Kannan

Department of Mathematics,
Indian Institute of Technology Kharagpur,

email: rajeshkannan1.m@gmail.com, rajeshkannan@maths.iitkgp.ac.in

September 2019

1/31



References

A. Ramachandra Rao and P Bhimasankaram , Linear Algebra, Second
edition, Hindustan book agency.

2/31



Outline

Eigenvalues and eigenvectors,

Spectral representation of semi-simple matrices,
Spectral theorem symmetric matrices, Hermitian matrices and normal
matrices,
Schur’s lemma,
Singular value decomposition.

3/31



Outline

Eigenvalues and eigenvectors,
Spectral representation of semi-simple matrices,

Spectral theorem symmetric matrices, Hermitian matrices and normal
matrices,
Schur’s lemma,
Singular value decomposition.

3/31



Outline

Eigenvalues and eigenvectors,
Spectral representation of semi-simple matrices,
Spectral theorem symmetric matrices, Hermitian matrices and normal
matrices,

Schur’s lemma,
Singular value decomposition.

3/31



Outline

Eigenvalues and eigenvectors,
Spectral representation of semi-simple matrices,
Spectral theorem symmetric matrices, Hermitian matrices and normal
matrices,
Schur’s lemma,

Singular value decomposition.

3/31



Outline

Eigenvalues and eigenvectors,
Spectral representation of semi-simple matrices,
Spectral theorem symmetric matrices, Hermitian matrices and normal
matrices,
Schur’s lemma,
Singular value decomposition.

3/31



Eigenvalues and eigenvectors

Definition
A complex number λ is said to be an eigenvalue of an n × n complex
matrix A, if there exists a nonzero vector x ∈ Cn such that Ax = λx .

The
vector x is said to be an eigenvector associated with the eigenvalue λ.

Theorem
A complex number λ is an eigenvalue of a complex matrix A if and only if
λ is a root of the characteristic polynomial det(A− λI) = 0.

Definition
Two n × n matrices A and B are said to be similar, if there exists an
invertible matrix C such that B = C−1AC.
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Algebraic and geometric multiplicity

Definition
For an eigenvalue λ of A, the subspace of all eigenvectors of A
corresponding to the eigenvalue λ together with the zero vector is called
the eigenspace of A corresponding to the λ.

Algebraic multiplicity of an eigenvalue λ of a matrix A is defined as the
multiplicity of λ considered as a root of the characteristic polynomial. An
eigenvalue λ is said to be simple, if its algebraic multiplicity is 1.

Geometric multiplicity of an eigenvalue λ of a matrix A is defined as the
dimension of the eigenspace associated with λ. An eigenvalue λ is said to
be regular, if its algebraic multiplicity is equal the geometric multiplicity.
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A.M. ≥ G.M.

Theorem
For any eigenvalue λ of A, the algebraic multiplicity of λ with respect to A
is greater than or equal to the geometric multiplicity of λ, as an eigenvalue
of A.

Proof
Let {x1, . . . , xk} be a basis for the eigenspace of λ, and let
{x1, x2, . . . , xn} be an extension to a basis of Cn.

Set P = [x1 x2 . . . xn].
Then P is nonsingular, and

P−1AP = P−1[Ax1 Ax2 . . . Axk . . . Axn]
= P−1[λx1 λx2 . . . λxk . . . Axn].
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Proof cont...

Thus,

P−1AP =
(
λIk B
0 C

)
,

for some matrices B and C .

Hence, χA(α) = χP−1AP(α) = (λ− α)kχC (α).
Thus, the algebraic multiplicity of λ is greater than or equal
geometric multiplicity of λ.
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Properties

If λ is an eigenvalue of A with eigenvector x , then λk is an eigenvalue
of Ak with eigenvector x .

If f (α) is a polynomial and λ is an eigenvalue of A, then f (λ) is an
eigenvalue of f (A).
If λ1, λ2, . . . , λk are the distinct eigenvalues of A, and x1, x2, . . . , xk
are the corresponding eigenvectors. Then the x1, x2, . . . , xk are
linearly independent.
If λ is a nonzero eigenvalue of a square matrix AB(A and B need not
be square), then λ is an eigenvalue of the matrix BA with the same
algebraic and geometric multiplicities. If x1, x2, . . . , xr are linearly
independent eigenvectors of AB corresponding to to λ, then
Bx1, . . . ,Bxr are linearly independent eigenvectors of BA
corresponding to λ.
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Weaker version of Schur’s lemma
Theorem
Every matrix A is similar to an upper triangular matrix over C.

Proof
Proof by induction. If n = 1, then we are done.
Assume the result is true for (n − 1)× (n − 1) matrices.
Let A be an n × n matrix, and λ be an eigenvalue of A with
eigenvector x .
Let P be a nonsingular matrix with x as the first column.

Then, P−1AP =
(
λ yT

0 C

)
, for some 1× n − 1 vector yT and

(n − 1)× (n − 1) matrix C .
By induction, there exists a non-singular matrix W such that
T = W−1CW is upper triangular.

Set Q =
(

1 0
0 W

)
.
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Proof cont...

(PQ)−1A(PQ) =
(

1 0
0 W−1

)(
λ yT

0 C

)(
1 0
0 W

)
=(

λ yT W
0 T

)
,

which is upper triangular .
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Corollary
Let λ1, λ2, . . . , λk be the eigenvalues of the matrix A and let f (α) be a
polynomial. Then f (λ1), f (λ2), . . . , f (λk) are the eigenvalues of f (A).

Proof Exercise!
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Cayely-Hamilton Theorem
Definition
A polynomial f (λ) is said to annihilate A if f (A) = 0.

Theorem
For every matrix A, the characteristic polynomial of A annihilates A.

Proof.
By weak Schur’s lemma, T = PAP−1 for some invertible matrix P
and upper triangular matrix T .
Let Wk =

∏k
i=1(T − tii I).

Then first k columns of Wk are zero. induction.
k = 1 trivial.
Assume the result is true for k − 1.
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Proof cont...

Proof.

Let B = Wk−1 and C = T − tkk I.
Then, for l ≤ k, we have (Wk)il =

∑n
j=1 bijcjl = 0.(Reason: bij = 0 if

j ≤ k − 1 and cjl = 0 if j ≥ k)
Thus first k columns of Wk are zero, and hence Wn = 0.
0 = f (T ) = P−1f (A)P.
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Minimal polynomial

Definition
The monic polynomial of the least degree which annihilates A is called the
minimal polynomial of A.

Theorem
The minimal polynomial of A divides every polynomial which annihilates A.

Proof.
Division algorithm.
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Theorem
The minimal polynomial of A divides the characteristic polynomial of A.

A
complex number α is a root of the minimal polynomial if and only if α is a
root of the characteristic polynomial.

Proof.
Proof of ”if” part is clear. Proof of converse.
Let µ(z) be the minimal polynomial of A.
If λ is a characteristic root of A, then µ(A)x = µ(λ)x , where x is the
eigenvector corresponding to the eigenvalue λ of A.
As µ(A) = 0, so µ(λ) = 0.
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Semi-simple matrices

Definition
A matrix is said to be semi-simple or diagonalizable if it is similar to a
diagonal matrix.

Remark
If A is semi-simple and is similar to the diagonal matrix diagonal entries
are d1, d2, . . . , dn, then the eigenvalues of the matrix A are d1, d2, . . . , dn.

Observation
If P−1AP = D is a diagonal matrix, then AP = DP. We can see that, di is
an eigenvalue of A with i th column of P as the corresponding eigenvector.
Conversely, if A has n linear independent eigenvectors, and P is the matrix
formed with these vectors as eigenvectors, then P−1AP is diagonal.
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Characterization of semisimple matrices

Theorem
The following statements about an n × n matrix A are equivalent:

1 A is semi-simple,
2 algebraic multiplicity of every eigenvalue is equal to the geometric

multiplicity of it,
3 A has n linearly independent eigenvectors
4 the minimal polynomial of A is a product of distinct linear

factors.((section 8.5) for minimal polynomial)

Proof
(1) implies (2) is clear.
(2) implies (3) is clear.
(2) implies (1) follows from the observation.
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Applications:

1 If an n × n matrix A has n distinct eigenvalues, then it is
diagonalizable.

2 Any idempotent matrix is diagonalizable(P2 = P).
3 Any nonzero nilpotent matrix is not diagonalizable(Ak = 0, for some

integer k).
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Spectral representation for semi-simple matrices

Theorem
The following statements about an n × n matrix A are equivalent:

1 A is semi-simple and has rank r ,
2 there exists a non-singular matrix P of order n, and a diagonal

nonsingular matrix ∆ of order r such that A = P
(

∆ 0
0 0

)
P−1,

3 There exists nonzero scalars γ1, γ2, . . . , γr and vectors u1, . . . , ur and
v1, . . . , vr in Cn such that vi

T uj = δij for all i , j and

A =
r∑

i=1
γi ui vi

T
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Proof

(1) implies (2). Permutation of D.

(2) implies (1). Trivial.
(2) implies (3). Set δi = i th diagonal entry of ∆, ui = i th column of
P, and vT

i = i th row of P−1 .
(3) implies (2). Exercise!
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Symmetric and Hermitian matrices

Definition
An n × n matrix is said to be symmetric, if AT = A.

An n × n matrix is
said to be Hermitian, if A∗ = A.

Theorem
Eigenvalues of any Hermitian matrix are real numbers. (Eigenvalues of any
real symmetric matrix are real numbers)

A real matrix A is said to be orthogonal if AAT = AT A = I, and a
complex matrix A is said to be unitary if AA∗ = A∗A = I.
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Theorem (Spectral theorem for real symmetric matrices)
Any real symmetric matrix is orthogonally similar to a diagonal matrix.

Proof by induction.
n = 1, trivial case.
Assume the result is true for matrices of order n − 1, and A be a
symmetric n × n matrix.
Let λ be a real eigenvalue of A and x be a corresponding eigenvector
with unit length.
Let P be an orthogonal matrix with x as the first column.

Then P−1AP =
(
λ yT

0 C

)
, for some vector yT and some

(n − 1)× (n − 1) matrix C .
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Proof continued...

Since P−1 = PT , we have yT = 0 and C is symmetric.

By induction, we have C = W−1DW , where D is a diagonal matrix
and W is an orthogonal matrix.
Set Q = diag(1,W ), then Q and PQ are diagonal matrices.

(PQ)−1A(PQ) =
(

1 0
0 W−1

)(
λ 0
0 C

)(
1 0
0 W

)
=
(
λ 0
0 D

)
.
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Spectral theorem for Hermitian matrices and Schur’s
lemma

Theorem
Any Hermitian matrix is unitarily similar to a real diagonal matrix.

Proof.
Similar to spectral theorem real symmetric matrices.
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Spectral decomposition

Theorem
Let A be an n × n Hermitian matrix with rank r . Then A can be
represented in each of the following equivalent forms:

1 There exists a unitary matrix P and a real diagonal nonsingular

matrix ∆ of rank r such that A = P
(

∆ 0
0 0

)
P∗.

2 There exists non-zero real numbers λ1, λ2, . . . , λr and orthogonal
vectors u1, . . . , ur such that A =

∑n
i=1 λi ui u∗i .

3 There exists matrices R and ∆ of orders n × r and r × r ,
respectively, such that ∆ is real, diagonal and non-singular, R∗R = I
and A = R∆R∗.
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Theorem (Schur, Jacobi)
Every complex matrix A is unitarily similar to an upper triangular matrix.

Similar to the proof of invertible similarity.

Remark
1 True or False: Every real matrix is orthogonally similar to an upper

triangular matrix. Answer : False
2 Every real matrix A with real eigenvalues is orthogonally similar to an

upper triangular matrix.
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Normal matrices
Suppose an n× n complex matrix A is unitarily similar to a diagonal matrix
D i.e., A = U∗DU, where U is an unitary matrix. Then AA∗ = A∗A.

Definition
An n × n matrix is said to be normal, if AA∗ = A∗A.

Theorem
An upper triangular matrix is normal if and only if it is diagonal.

Proof:
Consider the kth diagonal entry of TT ∗ and T ∗T ,

k∑
i=1
|t2

ik | =
n∑

j=k
|t2

kj |.

By equating first diagonal entries of TT ∗ and T ∗T , we can observe
the first row of T is zero expect the diagonal entry.
By a similar argument, we can conclude T must be diagonal.
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D i.e., A = U∗DU, where U is an unitary matrix. Then AA∗ = A∗A.

Definition
An n × n matrix is said to be normal, if AA∗ = A∗A.

Theorem
An upper triangular matrix is normal if and only if it is diagonal.

Proof:
Consider the kth diagonal entry of TT ∗ and T ∗T ,

k∑
i=1
|t2

ik | =
n∑

j=k
|t2

kj |.

By equating first diagonal entries of TT ∗ and T ∗T , we can observe
the first row of T is zero expect the diagonal entry.
By a similar argument, we can conclude T must be diagonal.
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Spectral theorem for Normal matrices

Theorem
A matrix is unitarily similar to a diagonal matrix if and only if it is normal.

Proof:
”If” part is clear.
Assume A is normal.
By Schur’s lemma, A is unitarily similar to a upper triangular matrix
T .
Now, T = U∗AU, and T is normal.
So, T is diagonal, by previous theorem.
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Positive Semidefinite Matrices(PSD)

Let Sn denote the subspace of symmetric matrices in Rn×n. A ∈ Sn is
positive semidefinite(PSD) if xT Ax ≥ 0 for every x ∈ Rn.
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Theorem
TFAE for A ∈ Rn×n:

1 A is PSD
2 There exists C ∈ Sn such that A = C2,
3 There exists an n × n lower triangular matrix L such that A = LLT ,
4 There exists an n × k real matrix B such that A = BBT ,

Proof
(1) implies (2), Spectral theorem.
(2) implies (3), QR-decomposition
(3) implies (4), proof? Exercise!
(4) implies (1).
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Singular value decomposition(SVD)
Definition
A singular value decomposition of an m× n matrix A is a representation of

A in the following form: A = U
(

∆ 0
0 0

)
V ∗, where U and V are unitary

matrices and ∆ is a diagonal matrix with positive diagonal entries.

Theorem
Every matrix has a singular value decomposition.

Proof:
Let A be an m × n matrix with rank r .
Then the matrix AA∗ is Hermitian with rank r .
By Spectral theorem, we have AA∗ = RΛR∗, where
Λ = diag(d1, . . . , dr ) and R∗R = I.
Take B = A∗R, then B∗B = Λ.
Define S = BG where G = diag( 1√

d1
, . . . , 1√

dr
).

Verify RG−1S∗ is a singular value decomposition for A.
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