Problem set 9

MATHEMATICS-II (MA10002)(Vector Analysis)

1. Determine gradient and the unit normal vector for the following surfaces:
(a) $x^{2} y^{3}+3 x z+2 y^{4}=5$ at $(1,-2,0)$.
(b) $y \log x-x^{2}+x z^{3}=1$ at $(1,0,1)$.
(c) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ at $\left(x_{0}, y_{0}, z_{0}\right)$.
(d) $z=\tan \left(x^{2}+y^{2}\right)$ at $(0,0,1)$.
2. Find the directional derivative of the following surfaces:
(a) $f=e^{x} \cos y$ at $\left(0, \frac{\pi}{4}\right)$ in the direction $\hat{i}+3 \hat{j}$.
(b) $f=\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}$ at $(-1,1,2)$ in the direction $\hat{i}-2 \hat{j}+\hat{k}$.
(c) $f=\sqrt{x y^{2}+2 x^{2} z}$ at $(2,-2,1)$ in the direction parallel to the z axis.
(d) $f=3 x^{4}+2 y^{3}-a^{2}$ at $(1,1)$ in the direction which makes an angle 30° to x axis, where a is some constant.
3. In what direction from $(3,1,-2)$ is the directional derivative of $\phi=x^{2} y^{2} z^{4}$ is maximum and what is its magnitude?
4. Find the angle between the two surfaces $x^{2}+y^{2}+z^{2}=6$ and $z=x^{2}+y^{2}$ at the point (1, $-1,2$).
5. Find the constants a and b such that the surface $a x^{2}-b y z-(a+2) x=0$ will be orthogonal to the surface $4 x^{2} y+z^{3}-4=0$ at the point $(1,-1,2)$.
6. If $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ and $r=|\vec{r}|$, then prove that,
(a) $\nabla r^{n}=n r^{n-2} \vec{r}$.
(b) $\nabla^{2} r^{n}=\nabla \cdot\left(\nabla r^{n}\right)$.
(c) $\nabla^{2} \ln r=\frac{1}{r^{2}}$.
7. For any constant vector \vec{a} prove that
(a) $\operatorname{div}[(\vec{a} \cdot \vec{r}) \vec{r}]=4 \vec{a} \cdot \vec{r}$, where $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$.
(b) $\nabla \times(\vec{a} \times \vec{v})=\vec{a}(\nabla \cdot \vec{v})-(\vec{a} \cdot \nabla) \vec{v}$, where \vec{v} is any vector field.
8. For any two scalar functions f and g prove that
(a) $\nabla \cdot(f \nabla g)=f \nabla^{2} g+\nabla f \cdot \nabla g$.
(b) $\nabla \cdot(\nabla f \times \nabla g)=0$.
9. If a rigid body rotates about an axis passing through the origin with angular velocity $\vec{\omega}$ and with linear velocity $\vec{v}=\vec{\omega} \times \vec{r}$, then prove that

$$
\vec{\omega}=\frac{1}{2}(\vec{\nabla} \times \vec{v})
$$

10. If $\vec{F}=\frac{\vec{r}}{r^{2}}$, where $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$, then evaluate $\nabla \cdot \vec{F}$ and $\nabla \times \vec{F}$ and state whether \vec{F} is solenoidal or irrotational.
11. If \vec{A} and \vec{B} are irrotational, show that $\vec{A} \times \vec{B}$ is solenoidal.
12. Show that, $r^{n} \vec{r}$ is solenoidal only when $n=-3(r \neq 0)$.
13. Show that the vector field defined by the vector function $\vec{v}=x y z(y z \hat{i}+z x \hat{j}+x y \hat{k})$ is conservative and find the corresponding scalar potential function.
14. Suppose $\vec{F}=y \hat{i}+(\mathrm{x}-2 \mathrm{xz}) \hat{\mathrm{j}}-\mathrm{xy} \hat{\mathrm{k}}$

Evaluate $\iint_{s}(\nabla \times \vec{F}) \cdot \mathrm{n}$ ds where S is the surface of the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ about the xy plane.
15. Verify Gauss theorem for $\vec{F}=x \hat{i}-y^{2} \hat{j}+z^{2} \hat{k}$ over the region bounded by $x^{2}+y^{2}=$ $4, z=0, z=4$.
16. Verify Stokes' theorem for $\vec{F}=(2 x-y) \hat{i}-y z^{2} \hat{j}-y^{2} z \hat{k}$, where S is the upper half surface of the unit sphere and C is its boundary.
17. Use Green's theorem to evaluate the integral $\int_{C}\left[\left(1+x^{2}\right) d x-x^{2} d y\right]$, where C consists the arc of the parabola $y=x^{2}$ from $(-1,1)$ to $(1,1)$.
18. Verify Green's theorem in the plane for $\oint\left(x y+y^{2}\right) d x+x^{2} d y$, where C is the closed curve of the region bounded by $y=x$ and $y=x^{2}$.

