MATHEMATICS-II (MA10002)(Vector Analysis)

- 1. Determine gradient and the unit normal vector for the following surfaces:
 - (a) $x^2y^3 + 3xz + 2y^4 = 5$ at (1, -2, 0).
 - (b) $y \log x x^2 + xz^3 = 1$ at (1, 0, 1).
 - (c) $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ at (x_0, y_0, z_0) .
 - (d) $z = \tan(x^2 + y^2)$ at (0, 0, 1).
- 2. Find the directional derivative of the following surfaces:
 - (a) $f = e^x \cos y$ at $(0, \frac{\pi}{4})$ in the direction $\hat{i} + 3\hat{j}$.
 - (b) $f = (x^2 + y^2 + z^2)^{3/2}$ at (-1, 1, 2) in the direction $\hat{i} 2\hat{j} + \hat{k}$.
 - (c) $f = \sqrt{xy^2 + 2x^2z}$ at (2, -2, 1) in the direction parallel to the z axis.
 - (d) $f = 3x^4 + 2y^3 a^2$ at (1, 1) in the direction which makes an angle 30° to x axis, where a is some constant.
- 3. In what direction from (3, 1, -2) is the directional derivative of $\phi = x^2 y^2 z^4$ is maximum and what is its magnitude?
- 4. Find the angle between the two surfaces $x^2 + y^2 + z^2 = 6$ and $z = x^2 + y^2$ at the point (1, -1, 2).
- 5. Find the constants a and b such that the surface $ax^2 byz (a+2)x = 0$ will be orthogonal to the surface $4x^2y + z^3 4 = 0$ at the point (1, -1, 2).
- 6. If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $r = |\vec{r}|$, then prove that,
 - (a) $\nabla r^n = nr^{n-2}\vec{r}$.
 - (b) $\nabla^2 r^n = \nabla \cdot (\nabla r^n).$
 - (c) $\nabla^2 \ln r = \frac{1}{r^2}$.
- 7. For any constant vector \vec{a} prove that

- (a) $div[(\vec{a} \cdot \vec{r})\vec{r}] = 4\vec{a} \cdot \vec{r}$, where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$.
- (b) $\nabla \times (\vec{a} \times \vec{v}) = \vec{a} (\nabla \cdot \vec{v}) (\vec{a} \cdot \nabla) \vec{v}$, where \vec{v} is any vector field.
- 8. For any two scalar functions f and g prove that
 - (a) $\nabla \cdot (f\nabla g) = f\nabla^2 g + \nabla f \cdot \nabla g.$
 - (b) $\nabla \cdot (\nabla f \times \nabla g) = 0.$
- 9. If a rigid body rotates about an axis passing through the origin with angular velocity $\vec{\omega}$ and with linear velocity $\vec{v} = \vec{\omega} \times \vec{r}$, then prove that

$$\vec{\omega} = \frac{1}{2} \left(\vec{\nabla} \times \vec{v} \right)$$

- 10. If $\vec{F} = \frac{\vec{r}}{r^2}$, where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, then evaluate $\nabla \cdot \vec{F}$ and $\nabla \times \vec{F}$ and state whether \vec{F} is solenoidal or irrotational.
- 11. If \vec{A} and \vec{B} are irrotational, show that $\vec{A} \times \vec{B}$ is solenoidal.
- 12. Show that, $r^n \vec{r}$ is solenoidal only when n = -3 $(r \neq 0)$.
- 13. Show that the vector field defined by the vector function $\vec{v} = xyz(yz\hat{i} + zx\hat{j} + xy\hat{k})$ is conservative and find the corresponding scalar potential function.
- 14. Suppose $\overrightarrow{F} = y\hat{i} + (x 2xz)\hat{j} xy\hat{k}$ Evaluate $\int \int_{s} (\nabla \times \overrightarrow{F}) \cdot n$ ds where S is the surface of the surface of the sphere $x^{2} + y^{2} + z^{2} = a^{2}$ about the xy plane.
- 15. Verify Gauss theorem for $\overrightarrow{F} = x\hat{i} y^2\hat{j} + z^2\hat{k}$ over the region bounded by $x^2 + y^2 = 4, z = 0, z = 4$.
- 16. Verify Stokes' theorem for $\vec{F} = (2x y)\hat{i} yz^2\hat{j} y^2z\hat{k}$, where S is the upper half surface of the unit sphere and C is its boundary.
- 17. Use Green's theorem to evaluate the integral $\int_C [(1+x^2)dx x^2dy]$, where C consists the arc of the parabola $y = x^2$ from (-1, 1) to (1, 1).
- 18. Verify Green's theorem in the plane for $\oint (xy+y^2)dx+x^2dy$, where C is the closed curve of the region bounded by y = x and $y = x^2$.