Problem Set-8

MATHEMATICS-II (MA10002)

1. (a) Find the jacobian of the following transformations T.
(i) $T: x+y=u, y=u v$. Find $J=\frac{\partial(x, y)}{\partial(u, v)}$.
(ii) $T: x=2 u+3 v, y=2 u-3 v$. Find $J=\frac{\partial(x, y)}{\partial(u, v)}$.
(iii) $T: x+y+z=u, x+y=u v, x=u v w$. Find $J=\frac{\partial(x, y, z)}{\partial(u, v, w)}$.
(iv) $T: x=r \cos \phi \sin \theta, y=r \sin \phi \sin \theta, z=r \cos \theta$. Find $J=\frac{\partial(x, y, z)}{\partial(r, \theta, \phi)}$.
(b) Evaluate the double integrations using change of variable.
(i) Evaluate $\iint_{R} \sqrt{x^{2}+y^{2}} d x d y$, the field of integration being R, the region in $x y$ plane bounded by the circle $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$. [Hint: $x=r \cos \theta$, $y=r \sin \theta$.]
(ii) Using the transformation $x+y=u, y=u v$, show that $\iint_{E} e^{\frac{y}{x+y}} d x d y=\frac{1}{2}(e-1)$ where E is the triangle bounded by $x=0, y=0, x+y=1$.
(iii) Evaluate $\iint_{R}(x+y) d A$, where R is the trapezoidal region with vertices given by $(0,0),(5,0),\left(\frac{5}{2}, \frac{5}{2}\right)$ and $\left(\frac{5}{2},-\frac{5}{2}\right)$ using the transformation $x=2 u+3 v$ and $y=2 u-3 v$.
(c) Evaluate

$$
\iint_{R} \frac{\sqrt{a^{2} b^{2}-b^{2} x^{2}-a^{2} y^{2}}}{\sqrt{a^{2} b^{2}+b^{2} x^{2}+a^{2} y^{2}}} d x d y
$$

the field of integration being R, the positive quadrant of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. [Hint: change ellipse to a circle using $x=a u, y=b v$.]
2. Show that $\iint_{E} y d x d y=\frac{1}{3} a^{3}-\frac{a^{2}}{2} k+\frac{b}{4} k^{2}+\frac{1}{6} k^{3}$ where $k=-\frac{b}{2}+\sqrt{a^{2}+\frac{b^{2}}{4}}$ and E is the region in the first quadrant bounded by x-axis, the curves $x^{2}+y^{2}=a^{2}, y^{2}=b x$.
3. Find the value of the following triple integrals.
a) $\iiint_{R}(x+y+z) d x d y d z$ where $R: 0 \leq x \leq 1,1 \leq y \leq 2,2 \leq z \leq 3$.
b) $\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+\log y} e^{x+y+z} d z d y d x$.
4. Compute $\iiint \frac{d x d y d z}{(1+x+y+z)^{3}}$ if the region of integration is bounded by the co-ordinate planes and the plane $x+y+z=1$.
5. Evaluate $\iiint_{x} x^{2} y z d x d y d z$ throughout the volume bounded by the planes $x=0, y=0$, $z=0$ and $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$, by using $x=a v, y=b v, z=c w$.
6. Using spherical co-ordinate evaluate $\iiint\left(x^{2}+y^{2}+z^{2}\right) d x d y d z$ enclosed by the sphere $x^{2}+y^{2}+z^{2}=1$.
7. Evaluate $\iiint_{R} y d V$ where R is the region lies below the plane $z=x+1$ above the $x y$-plane and between the cylinders $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.
8. Find the surface area of the cylinder $x^{2}+z^{2}=4$ inside the cylinder $x^{2}+y^{2}=4$.
9. Find the surface area of the sphere $x^{2}+y^{2}+z^{2}=9$ lying inside the cylinder $x^{2}+y^{2}=3 y$.
10. Find the surface area of the section of the cylinder $x^{2}+y^{2}=a^{2}$ made by the plane $x+y+z=a$.
11. Find the volume of the solid bounded by the parabolic $y^{2}+z^{2}=4 x$ and the plane $x=5$.
12. Calculate the volume of the solid bounded by the following surfaces

$$
z=0, x^{2}+y^{2}=1, x+y+z=3
$$

13. Find the volume bounded by the cylinder $x^{2}+y^{2}=4$ and the planes $y+z=4$ and $z=0$.
```
END
```

