Problem set 5
 MATHEMATICS-II (MA10002)(Numerical Analysis)

1. Find $f(0.05)$ using the Newton's forward difference formula from the given table:

x	0	0.1	0.2	0.3	0.4
$f(x)$	1	1.2214	1.4918	1.8221	2.2255

2. Using Newton's forward difference formula find $f(1.5)$ from the given table

x	0	2	4	6	8
$f(x)$	-1	13	43	89	151

3. Given:

x	2.0	2.2	2.4	2.6	2.8	3.0
$f(x)=\log _{10} x$	0.30103	0.34242	0.38021	0.41497	0.44716	0.47721

Find the value of $\log _{10} 2.91$ using Newton's backward difference formula.
4. Find the value of $f(1.45)$ using Newton's backward difference formula.

x	1.0	1.1	1.2	1.3	1.4	1.5
$f(x)$	0.24197	0.21785	0.19419	0.17137	0.14973	0.12952

5. In an examination the number of candidates who secured marks between certain limit were as follows:

Marks	$0-19$	$20-39$	$40-59$	$60-89$	$80-99$
No. of candidates	41	62	65	50	17

Estimate the number of candidates getting marks less than 70.
6. A certain function f, defined on the interval $(0,1)$ is such that $f(0)=0, f(1 / 2)=-1, f(1)=$ 0 . Find the quadratic polynomial $p(x)$ which agrees with $f(x)$ for $x=0,1 / 2,1$. If $\left|\frac{d^{3} f}{d x^{3}}\right| \leq 1$ for $0 \leq x \leq 1$. Show that $|f(x)-p(x)| \leq \frac{1}{12}$ for $0 \leq x \leq 1$.
7. Show that the sum of Lagrangian functions or coefficients is unity, i.e., $\sum_{r=0}^{n} w_{r}(x)=1$.
8. Use Lagrange's formula to find the value of y when $x=102$, from the given data:

x	93	96.2	100	104.2	108.7
$y=f(x)$	11.38	12.80	14.70	17.07	19.91

9. Find by Lagrange's formula the interpolation polynomial which corresponds to the following data:

x	-1	0	2	5
$f(x)$	9	5	3	15

10. Evaluate $\int_{0}^{1}\left(4 x-3 x^{2}\right) d x$, taking ten equal intervals, by (i)trapezoidal rule, (ii)Simpson's one-third rule. Compute the exact value and find the errors in your result.
11. Evaluate $\int_{0}^{1} \frac{1}{1+x^{2}} d x$, by (i) trapezoidal rule and (ii) Simpson's one-third rule taking six equal intervals, correct up to three decimal places and find the errors in both the methods.
12. Find the value of $\int_{0}^{\pi / 2} e^{\sin x} d x$, by (i) trapezoidal rule and (ii) Simpson's one-third rule taking $h=\frac{\pi}{12}$, correct up to five decimal places.
13. Find the value of $\int_{0}^{1} \cos x d x$, taking five equal intervals. Explain the reason behind your choice of the integration formula used.
