Problem set 4

1. Solve the following equations by (i) Gauss-Jacobi method (ii) Gauss-Seidel method, correct up to three decimal places with initial guess a) $(0,0,0)$; b) $(0,0,0,0)$ and c) $(0,0,0,0)$ respectively
(a)

$$
\begin{aligned}
7 x+2 y-z & =17.20 \\
-x+9 y+2 z & =18.90 \\
x+5 y-11 z & =28.05
\end{aligned}
$$

(b)

$$
\begin{aligned}
10 x_{1}-2 x_{2}-x_{3}-x_{4} & =3 \\
-2 x_{1}+10 x_{2}-x_{3}-x_{4} & =15 \\
-x_{1}-x_{2}+10 x_{3}-2 x_{4} & =27 \\
-x_{1}-x_{2}-2 x_{3}+10 x_{4} & =-9
\end{aligned}
$$

(c)

$$
\begin{aligned}
13 x_{1}+5 x_{2}-3 x_{3}+x_{4} & =18 \\
2 x_{1}+12 x_{2}+x_{3}-4 x_{4} & =13 \\
3 x_{1}-4 x_{2}+10 x_{3}+x_{4} & =29 \\
2 x_{1}+x_{2}-3 x_{3}+9 x_{4} & =31
\end{aligned}
$$

2. Find a real root, lying between 2 and 3 , of the equation $x^{3}-x-11=0$ by using bisection method correct up to three decimal places.
3. Solve the equations
(a) $2 x-3 \sin x-5=0$
(b) $x \log _{10} x=1.2$
by bisection method for the root lying between 2 and 3 correct up to three decimal places.
4. For an equation $f(x)=0$, discuss the convergence criteria of fixed point iteration method, of the presentation $x=\phi(x)$ of the given equation $f(x)=0$.
5. Find the root of the equation: $5 x^{3}-20 x+3=0$ by using fixed point iteration correct up to three decimal places.
6. Find the root of the equation: $\sin x=10(x-1)$ by using fixed point iteration correct up to three decimal places.
7. Find the root of the equation: $x^{2}+\ln x-2=0$ which lies between 1 and 2 , by using i) fixed point iteration method, ii) Newton-Raphson method, correct up to three decimal places. Then compare the number of iterations used in both the cases.
8. Find the root of the equation by Newton-Raphson method: $x \sin x+\cos x=0$, near π.
9. Find a positive root lying between 0.5 to 0.8 , of $10^{x}+x-4=0$ by Newton-Raphson method, correct up to six decimal places.
10. Find the iterative formula for finding $\sqrt[3]{N}$, where N is a positive real number, using NewtonRaphson method. Hence evaluate $\sqrt[3]{10}$ correct upto four places of decimal.
11. From the equation $x^{5}-a=0$, deduce the Newton-Raphson iterative procedure:

$$
x_{n+1}=\frac{1}{5}\left[4 x_{n}+\frac{a}{x_{n}^{4}}\right] \text { for } \sqrt[5]{a}
$$

Use this formula to evaluate $\sqrt[5]{3}$, correct upto four decimal places.
12. Find a double root (i.e. $\mathrm{m}=2$) for the equation $x^{3}-x^{2}-x+1=0$, using:
i) $x_{n+1}=x_{n}-m \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
ii) Newton-Raphson method, correct upto three decimal places.

Then compare the number of iteration used in both the cases.

