Problem Set - 3

SPRING 2018

MATHEMATICS-II (MA1002)

1. (a) Prove that if λ be an eigen value of a non-singular matrix A, then λ^{-1} is an eigen value of A^{-1}.
(b) Prove that if A and P be both $n \times n$ matrices and P be non-singular, then A and $P^{-1} A P$ have same eigen values.
(c) Prove that if λ be an r-fold eigen value of $A, 0$ is an r-fold eigen value of the matrix $A-\lambda I_{n}$.
2. For each of the following matrices, find all the eigenvalues and the corresponding eigen vectors.
(a) $\left(\begin{array}{cc}2 & \sqrt{2} \\ \sqrt{2} & 1\end{array}\right)$
(b) $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$
(c) $\left(\begin{array}{ccc}1 & 1 & 1 \\ -1 & -1 & -1 \\ 0 & 0 & 1\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & 0 & -2 i \\ 0 & 2 & 0 \\ 2 i & 0 & -1\end{array}\right)$.
3. $A=\left(\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right)$. Use Cayley Hamilton theorem to express $A^{6}-4 A^{5}+8 A^{4}-12 A^{3}+14 A^{2}$ as a linear polynomial in A.
4. Let $A=\left(\begin{array}{ccc}1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & 0\end{array}\right)$. Find A^{9} and A^{-1} by using Cayley Hamilton theorem.
5. Let, $A=\left(\begin{array}{lll}3 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right)$ and $P=\left(\begin{array}{ccc}0 & 0 & 1 \\ 1 & 1 & 0 \\ -1 & 1 & 0\end{array}\right)$. If $A=P^{-1} D P$ then find the matrix D.
6. The square matrix A is defined as $A=\left(\begin{array}{ccc}1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0\end{array}\right)$. Find the diagonal matrix D and the model matrix P such that $A=P^{-1} D P$.
7. The linear operator $L(x)$ is defined by the product $L(x)=b x$, where $b=\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]^{T}$ and $x=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]^{T}$ are three dimensional vector. The 3×3 matrix M of this operation satisfies $L(x)=M\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$. Find the eigen values of M.
8. If A is 4×4 matrix with real entries such that $-1,1,2,-2$ are its eigen values. If $B=A^{4}-5 A^{2}+5 I$ where I denotes the 4×4 identity matrix, then find trace of $(A+B)$.
9. (a) Show that $M=\left[\begin{array}{cccc}1 & 1+i & 2 i & 9 \\ 1-i & 3 & 4 & 7-i \\ -2 i & 4 & 5 & i \\ 9 & 7+i & -i & 7\end{array}\right]$ is Hermitian.
(b) Find real numbers x, y, z such that A is Hermitian, where $A=\left[\begin{array}{ccc}3 & x+2 i & y i \\ 3-2 i & 0 & 1+z i \\ y i & 1-x i & -1\end{array}\right]$.
10. The eigen vectors of the matrix $\left[\begin{array}{ll}1 & 2 \\ 0 & 2\end{array}\right]$ are written in the form $\left[\begin{array}{l}1 \\ a\end{array}\right]$ and $\left[\begin{array}{l}1 \\ b\end{array}\right]$. Then what is $a+b$?
11. (a) Let, $A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ be such that A has real eigen values then find the values of θ.
(b) If $x_{1}=\left[\begin{array}{l}1 \\ i\end{array}\right], x_{2}=\left[\begin{array}{l}i \\ 1\end{array}\right]$ are given vectors and $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ and if $P=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]$ then find the value $P^{-1} A P$.
12. Examine whether A is similar to B, where
(a) $A=\left[\begin{array}{cc}5 & 5 \\ -2 & 0\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & 2 \\ -3 & 4\end{array}\right]$
(b) $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$.
13. Let, A be an $n \times n$ matrix which is both Hermitian and unitary. Prove that $A^{2}=I$.
14. Express the matrix $A=\left[\begin{array}{ccc}1 & 2+i & 1-i \\ 2-i & 1+2 i & 3 \\ 2+i & 2 & 1+i\end{array}\right]$ as the sum of a Hermitian and skew Hermitian matrix.
15. Show that the matrix $\left[\begin{array}{cc}\alpha+i \nu & -\beta+i \delta \\ \beta+i \delta & \alpha-i \nu\end{array}\right]$ is unitary matrix if $\alpha^{2}+\beta^{2}+\nu^{2}+\delta^{2}=1$.
16. If $M=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & a^{2} & a \\ 1 & a & a^{2}\end{array}\right)$ where $a=e^{\frac{2 i \pi}{3}}$, then prove that $M^{-1}=\frac{1}{3} \bar{M}$.
