Problem Set - 2

SPRING 2018
MATHEMATICS-II (MA10002)(Linear Algebra)

1. Determine which of the following form a basis of the respective vector spaces:
(a) $\left\{1+2 x+x^{2}, 3+x^{2}, x+x^{2}\right\}$ of \mathbb{P}_{3},
(b) $\left\{1, \sin x, \sin ^{2} x, \cos ^{2} x\right\}$ of $C[-\pi, \pi]$,
(c)

$$
\left\{\left(\begin{array}{cc}
3 & 6 \\
3 & -6
\end{array}\right),\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & -8 \\
-12 & 4
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
-1 & 2
\end{array}\right)\right\}
$$

of $M_{2 \times 2}$
2. Determine the basis and dimension of the following subspaces
(a) $U=\left\{(x, y, z) \in \mathbb{R}^{3}: \mathrm{x}+2 \mathrm{y}+\mathrm{z}=0,2 \mathrm{x}+\mathrm{y}+3 \mathrm{z}=0\right\}$ of \mathbb{R}^{3}.
(b) $U=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in \mathbb{R}^{5}: x_{2}=x_{3}=x_{4}\right.$ and $\left.x_{1}+x_{5}=0\right\}$ of \mathbb{R}^{5}
(c) Let $U=\left\{p \in \mathbb{P}_{4}: \int_{-1}^{1} p=0\right\}$. Find a basis and dimension of U .
3. Let $V=M_{2 \times 2}(F)$ and
$W_{1}=\left\{\left[\begin{array}{ll}a & b \\ c & a\end{array}\right] \in V: a, b, c \in F\right\}$,
$W_{2}=\left\{\left[\begin{array}{cc}0 & a \\ -a & b\end{array}\right] \in V: a, b \in F\right\}$. Find the dimension of $W_{1}, W_{2}, W_{1}+W_{2}, W_{1} \cap W_{2}$.
4. Check the following mappings are linear transformation or not:
(a) $\mathrm{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$,defined by $T(x, y, z)=(|x|, y+z), \forall(x, y, z) \in \mathbb{R}^{3}$.
(b) $\mathrm{T}: \mathbb{P}_{3} \rightarrow \mathbb{P}_{4}$, defined by $T(p(x))=(x+1) p(x)+p^{\prime}(0)$.
5. Give an example of a function $\phi: \mathbb{C} \rightarrow \mathbb{C}$,such that $\phi(w+z)=\phi(w)+\phi(z), \forall w, z \in \mathbb{C}$. But ϕ is not linear.
6. Find the null space and range space of the following linear transformations.Aiso find their respective dimensions and verify the rank-nullity theorem.
(a) $T: M_{n \times n}(F) \rightarrow F$ defined by $\mathrm{T}(\mathrm{A})=\operatorname{trace}(\mathrm{A})$.
(b) $T: \mathbb{P}_{2}(\mathbb{R}) \rightarrow \mathbb{P}_{3}(\mathbb{R})$ defined by $T(f(x))=2 f^{\prime}(x)+\int_{0}^{x} 3 f(t) d t$.
(c) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$, $T(x, y, z)=\left(\frac{x+y+z}{2}, \frac{x}{2}\right)$
(d) $T: M_{2 \times 2}(F) \rightarrow M_{2 \times 2}(F)$ defined by $T(A)=\frac{A+A^{T}}{2}, \forall A \in M_{2 \times 2}(F)$.
7. Find the linear transformations:
(a) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ such that $T(1,1)=(1,0,2), T(2,3)=(1,-1,4)$.
(b) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ where $T\left(e_{1}\right)=e_{1}-e_{2}, T\left(e_{2}\right)=2 e_{1}+e_{3}, T\left(e_{3}\right)=e_{1}+e_{2}+e_{3} \cdot\left\{e_{1}, e_{2}, e_{3}\right\}$ is the usual basis of \mathbb{R}^{3}.
8. Find the matrix of the linear transformations w.r.t the given bases:
(a) $D: P_{3} \rightarrow P_{3}$ defined by $D(p(x))=\frac{d^{2}}{d x^{2}}(p(x))$, w.r.t. the basis $\left\{1, x, x^{2}, x^{3}\right\}$.
(b) $T: P_{2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ by

$$
T(f(x))=\left[\begin{array}{cc}
f^{\prime}(0) & 2 f(1) \\
0 & \mathrm{f}^{\prime \prime}(3)
\end{array}\right]
$$

w.r.t. the basis $\left\{1, x, x^{2}\right\}$ and $\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$.
9. (a) $T: P_{3}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R})$ by $T(f(x))=\int_{0}^{x} f(t) d t$. Prove that T is linear and one-one but not onto.
(b) Prove that there does not exist a linear map $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{5}$ such that $R(T)=N(T)$.
10. Solve the following system of equations by Gauss-elimination method:
(a) $\quad x_{1}+2 x_{2}+x_{3}-x_{4}=0$
$3 x_{1}+2 x_{2}-3 x_{3}=0$
(b) $x+y+z=1$
$x-y+z=4$
$-4 x_{1}-4 x_{2}+2 x_{3}+x_{4}=0$
$x+2 y+4 z=7$

$$
2 x_{1}-4 x_{3}=0
$$

11. Find the rank of the matrix A using definition where

$$
A=\left[\begin{array}{cccc}
2 & 3 & -1 & 1 \\
3 & 0 & 4 & 2 \\
6 & 9 & -3 & 3
\end{array}\right]
$$

12. Determine the rank of the following matrices by reducing to row echelon form.
(a) $\left[\begin{array}{llll}1 & 2 & 1 & 0 \\ 2 & 4 & 8 & 6 \\ 3 & 6 & 6 & 3\end{array}\right]$,
(b) $\left[\begin{array}{cccc}2 & 0 & 4 & 2 \\ 3 & 2 & 6 & 5 \\ 5 & 2 & 10 & 7 \\ 0 & 3 & 2 & 5\end{array}\right]$.
13. Find all x such that the rank of the matrix $\left[\begin{array}{lll}1 & x & x \\ x & 1 & x \\ x & x & 1\end{array}\right]$ is less than 3 .
14. Determine whether the following matrices are invertible or not, if it is, then compute the inverse :
(a) $\left[\begin{array}{lll}0 & 2 & 4 \\ 2 & 4 & 2 \\ 3 & 3 & 1\end{array}\right]$,
(b) $\left[\begin{array}{ccc}1 & 2 & 1 \\ 2 & 1 & -1 \\ 1 & 5 & 4\end{array}\right]$.
15. Find the value of k for which the system of equations has non-trivial solution.
(a) $x+y+z=0$
$y+z=0$
$k y+z=0$
(b) $(3 k-8) x+3 y+3 z=0$
$3 x+(3 k-8) y+3 z=0$
$3 x+3 y+(3 k-8) z=0$
16. If the following system

$$
\begin{aligned}
& a x+b y+c z=0 \\
& b x+c y+a z=0 \\
& c x+a y+b z=0
\end{aligned}
$$

has no trivial solution, then prove that $a+b+c=0$ or $a=b=c$.
17. Solve if possible

$$
\begin{array}{r}
x+2 y+z-3 w=1 \\
2 x+4 y+3 z+w=3 \\
3 x+6 y+4 z-2 w=5
\end{array}
$$

18. Determine the condition for which the system

$$
\begin{aligned}
x+y+z & =1 \\
x+2 y-z & =b \\
5 x+7 y+a z & =b^{2}
\end{aligned}
$$

admits of (i) only one solution, (ii) no solution, (iii) many solutions.

