Tutorial Sheet - 1

SPRING 2018
MATHEMATICS-II (MA10002)(Linear Algebra)
January 12, 2018

1. Determine which of the following sets form vector spaces under the given operations:
(i) The set of all triples of real numbers (x, y, z) with the operations $(x, y, z)+\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=$ $\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}\right)$ and $k(x, y, z)=(k x, y, z), k \in \mathbb{R}, \forall(x, y, z),\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in \mathbb{R}^{3}$.
(ii) Let $V=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}+x_{2}=1,0 \leq x_{1} \leq 1,0 \leq x_{2} \leq 1\right\}$ with the operations $\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)=\left(\frac{1}{2}\left(x_{1}+y_{1}\right), \frac{1}{2}\left(x_{2}+y_{2}\right)\right)$ and $r\left(x_{1}, x_{2}\right)=\left(r x_{1}, r x_{2}\right), r \in$ $\mathbb{R}, \forall\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in V$.
(iii) The set of all positive real numbers x with the operations $x+x^{\prime}=x x^{\prime}$ and $k x=x^{k}, k \in$ \mathbb{R}.
(iv) The set of all 2×2 matrices of the form $\left(\begin{array}{ll}a & 1 \\ 1 & b\end{array}\right)$ with usual matrix addition and scalar multiplication.
(v) Let $V=\{f \in C(\mathbb{R}): \exists p \in \mathbb{N}, f(x+p)=f(x), \forall x \in \mathbb{R}\}$. Is V forms a vector space under the usual addition and scalar multiplication of $C(\mathbb{R})$, the set of all continuous functions over \mathbb{R} ?
2. Determine which of the following subsets are the subspaces of the given vector spaces:
(i) All vectors of the form (a, b, c), with $b=a+c$ in \mathbb{R}^{3}.
(ii) All matrices with $A=A^{T}$ in $M_{n \times n}$, where $M_{n \times n}$ is the set of all $n \times n$ matrices.
(iii) All matrices of the form $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $a+d=0$ in $M_{2 \times 2}$.
(iv) All matrices with $\operatorname{det}(A)=0$ in $M_{n \times n}$.
(v) All vectors of the form (a, b, c), where $a b=0$ in \mathbb{R}^{3}.
(vi) Is the set $W=\left\{(a, b, c): a^{3}=b^{3}\right\}$ a subspace of both \mathbb{R}^{3} and \mathbb{C}^{3} ?
3. Let $S=\left\{f \in C[0,1]: \int_{0}^{1} f(x) d x=b\right.$, for some fixed $\left.b \in \mathbb{R}\right\}$. Then show that S is a subspace of $C[0,1]$ if and only if $b=0$.
4. Show that the set of differentiable real-valued functions f on the interval $(-4,4)$, such that $f^{\prime}(-1)=3 f(2)$ is a subspace of $C[-4,4]$.
5. (a) Write $E=\left(\begin{array}{ll}3 & -1 \\ 1 & -2\end{array}\right)$ as a linear combination of $A=\left(\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right), B=\left(\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right)$, $C=\left(\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right)$.
(b) Write $p=2+2 x+3 x^{2}$ as a linear combination of $p_{1}=2+x+4 x^{2}, p_{2}=1-x+3 x^{2}, p_{3}=$ $3+2 x+5 x^{2}$.
(c) Which of the following are linear combinations of the vectors $u=(1,-1,3), v=(2,4,0)$: (i) $(3,3,3)$, (ii) $(4,2,6)$, (iii) $(1,5,6)$, (iv) $(0,0,0)$.
6. In the vector space \mathbb{R}^{3}, let $u_{1}=(1,2,1), u_{2}=(3,1,5), u_{3}=(3,-4,7)$. Then show that $\operatorname{span}\left\{u_{1}, u_{2}\right\}=\operatorname{span}\left\{u_{1}, u_{2}, u_{3}\right\}$.
7. (a) Let $S=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ spans a vector space V. Show that the set $\left\{v_{1}-v_{2}, v_{2}-v_{3}, v_{3}-\right.$ $\left.v_{4}, v_{4}\right\}$ also spans V.
(b) Let $S=\left\{u_{1}, u_{2}, u_{3}\right\}, T=\left\{u_{1}, u_{1}+u_{2}, u_{1}+u_{2}+u_{3}\right\}$, and $U=\left\{u_{1}+u_{2}, u_{2}+u_{3}, u_{3}+u_{1}\right\}$ in \mathbb{R}^{4}. Show that $\operatorname{span} S=\operatorname{span} T=\operatorname{span} U$.
8. Which of the following sets are linear independent:
(a) $\{(4,-4,8,0),(2,2,4,0),(6,0,0,2),(6,3,-3,0)\}$ in \mathbb{R}^{4}.
(b) $\left\{2,4 \sin ^{2} x, \cos ^{2} x\right\}$ in $C[-\pi, \pi]$.
(c) $\left\{t^{3}-5 t^{2}-2 t+3, t^{3}-4 t^{2}-3 t+4,2 t^{3}-7 t^{2}-7 t+9\right\}$ in \mathbb{P}_{3}, where \mathbb{P}_{3} is the set of polynomials with degree ≤ 3.
(d) Let $f_{1}, f_{2} \in C[-1,1]$ be defined as $f_{1}(t)=t, t \in[-1,1]$ and

$$
f_{2}(t)= \begin{cases}-t, & t \in[-1,0] \\ t, & t \in[0,1]\end{cases}
$$

Show that the set $\left\{f_{1}, f_{2}\right\}$ is linearly dependent on $C[0,1]$ and $C[-1,0]$ and linearly independent on $C[-1,1]$.
(e) Show that the set of vectors $\{1+i, 1-i\} \subset \mathbb{C}$ is linearly independent if \mathbb{C} is taken as a vector space over \mathbb{R}. But it becomes linearly dependent when \mathbb{C} is a vector space over \mathbb{C}.
(f) Let $S=\left\{p_{0}, p_{1}, \ldots, p_{m}\right\} \subset \mathbb{P}_{m}$, such that $p_{j}(2)=0$ for $j=0,1, \ldots, m$. Prove that S is not linearly independent in \mathbb{P}_{m}.

