Tutorial Sheet - 9

MATHEMATICS-II (MA10002)

1. Evaluate the integrals over the region D.
(i) $\iint_{D} x y d A$, where D is region bounded by x-axis, ordinate $x=2 a$ and curve $x^{2}=4 a y$,
(ii) $\iint_{D} e^{\frac{x}{y}} d A$, where $D=\left\{(x, y) \mid 1 \leq y \leq 2, y \leq x \leq y^{3}\right\}$.
(iii) $\iint_{D}\left(4 x y-y^{3}\right) d A$, where D is region bounded by $y=\sqrt{x}$ and $y=x^{3}$,
(iv) $\iint_{D}\left(6 x^{2}-40 y\right) d A$, where D is the triangle with vertices $(0,3),(1,1)$ and $(5,3)$,
(v) $\int_{x=2} \int_{D}\left(x^{2}+2 x y^{2}+2\right) d A$, where D is region bounded by $y=x-x^{2}, y=0, x=0$ and $x=2$.
2. Evaluate the following integrals by changing the order of integration
(i) $\int_{0}^{4 a} \int_{\frac{x^{2}}{4 a}}^{2 \sqrt{a} x} d y d x$,
(ii) $\int_{0}^{1} \int_{x}^{\sqrt[4 a]{2-x^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}} d y d x$,
(iii) $\int_{0}^{3} \int_{x^{2}}^{9} x^{3} e^{y^{3}} d y d x$,
(iv) $\int_{0}^{8} \int_{3 \sqrt{y}}^{x^{2}} \sqrt{x^{4}+1} d x d y$.
3. Evaluate $\int_{0}^{1} \int_{0}^{1-x} e^{\frac{y}{x+y}} d y d x$, using the transformation $x+y=u$ and $y=u v$.
4. Consider the transform T from the $x y$-plane to the $u v$-plane given by

$$
T: x=\frac{1}{2}(u+v), y=\frac{1}{2}(u-v) .
$$

(i) Calculate the Jacobian of the transform T.
(ii) Evaluate $\iint_{D}(x-y) \cos ^{2}(x+y) d A$ using transformation T, where D is the square in $x y$-plane with vertices $(0,0),(\pi, \pi),(0,2 \pi)$ and $(-\pi, \pi)$.
5. Evaluate the integral by making an appropriate change of variables
(i) $\iint_{D} x^{2} d x d y, D$ is elliptic region $\left\{(x, y): \frac{x^{2}}{4}+\frac{y^{2}}{9} \leq 1\right.$.
(ii) $\iint_{D}^{D} y^{2} d x d y, D$ is region bounded by curves $x y=1, x y=2, x y^{2}=1$ and $x y^{2}=2$.
(iii) $\iint_{D}(x+y)^{2} d x d y, D$ is parallelogram bounded by the lines $x+y=0, x+y=1,2 x-y=0$ and $2 x-y=3$.
6. Find the area lying between the parabola $y^{2}=4 a x$ and $x^{2}=4 a y$.
7. Find the volume of the region bounded by the cylinder $x^{2}+y^{2}=4$ and the planes $y+z=4$ and $z=0$, using double integral.
8. Find the area of the paraboloid $2 z=\frac{x^{2}}{a}+\frac{y^{2}}{b}$ inside the cylinder $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
9. Calculate the area of the region bounded by the upper half of the circle $x^{2}+y^{2}=25$, the x -axis and the ordinates $x=-3$ and $x=4$.

