Tutorial Sheet - 6

SPRING 2017

MATHEMATICS-II (MA10002)(Numerical Analysis)

January 5, 2017

1. For the following data, find a polynomial f(x) and hence find the value of f(1.5)

x	1	2	3	4	5
f(x)	4	13	34	73	136

2. Find the missing terms in the following table

x	0	1	2	3	4	5
f(x)	0	-	8	15	-	35

3. In an examination the number of candidates who secured marks between certain limit were as follows:

x	0-19	20-39	40-59	60-79	80-99
f(x)	41	62	65	50	17

Estimate the number of candidate getting marks less than 70.

4. Compute f(21) using Newton's backward difference formula from the following data

x	0	5	10	15	20
f(x)	1.0	1.6	3.8	8.2	15.4

5. Find f(1.02) using Newton forward difference formula from the following table

x	1.00	1.10	1.20	1.30
f(x)	0.8415	0.8912	0.9320	0.9636

6. Find the Lagrange's interpolating polynomial satisfying the following data

x	-1	0	2	5
f(x)	9	5	3	15

- 7. Prove the following properties:
 - $(a) \ \Delta \cdot \nabla = \Delta \nabla$
 - (b) $E \cdot \Delta = \Delta \cdot E$
 - (c) $E = I + \Delta$

where Δ , ∇ , E and I are forward difference, backward difference, shift and identity operator, respectively.

- 8. Evaluate the integral $\int_{0.1}^{0.7} (e^x + 2x)$ by taking h = 0.5, correct up to 5-decimal places by (a) Trapezoidal rule
 - (b) Simpson's $\frac{1}{3}$ rule.
- 9. Write down the linear function which takes the same values as f(x) at $x = x_0, x_1$ and integrate it to obtain the Trapezoidal rule for approximation of f(x) over (0, 1). Prove that the error is $-\frac{h^3}{12}f''(\xi)$, where $h = x_1 x_0$ and $x_0 < \xi < x_1$.
- 10. Evaluate $\int_{1}^{2} \frac{dx}{x}$, taking 4-sub intervals, correct up to five decimal places by (a) Trapizoidal rule (b) Simson's $\frac{1}{3}$ rule Also find the absolute error.
- 11. Let $f(x) = \ln(1+x)$, $x_0 = 1$ and $x_1 = 1.1$. Use linear Lagrange interpolation to calculate an approximate value f(1.04) and obtain an bound on the truncation error.
- 12. Determine the appropriate step size to use, in the construction of a table of $f(x) = (1+x)^6$ on [0,1]. The truncation error for linear interpolation is to be bounded by 5×10^{-5}
- 13. (a) Show that the truncation error of quadratic interpolation in an equidistant table is bounded by

$$\left(\frac{h^3}{9\sqrt{3}}\right)max|f'''(\xi)|$$

(b) We want to set up an equidistant table of $f(x) = x^2 \ln(x)$ in the interval $5 \le x \le 10$. The function values are rounded to 5 decimals. Give the step size h which is to be used to yield a total error less than 10^{-5} on quadratic Lagrange interpolation in this table.