Tutorial Sheet - 6

1. For the following data, find a polynomial $f(x)$ and hence find the value of $f(1.5)$

x	1	2	3	4	5
$f(x)$	4	13	34	73	136

2. Find the missing terms in the following table

x	0	1	2	3	4	5
$f(x)$	0	-	8	15	-	35

3. In an examination the number of candidates who secured marks between certain limit were as follows:

x	$0-19$	$20-39$	$40-59$	$60-79$	$80-99$
$f(x)$	41	62	65	50	17

Estimate the number of candidate getting marks less than 70.
4. Compute $f(21)$ using Newton's backward difference formula from the following data

x	0	5	10	15	20
$f(x)$	1.0	1.6	3.8	8.2	15.4

5. Find $f(1.02)$ using Newton forward difference formula from the following table

x	1.00	1.10	1.20	1.30
$f(x)$	0.8415	0.8912	0.9320	0.9636

6. Find the Lagrange's interpolating polynomial satisfying the following data

x	-1	0	2	5
$f(x)$	9	5	3	15

7. Prove the following properties:
(a) $\Delta \cdot \nabla=\Delta-\nabla$
(b) $E \cdot \Delta=\Delta \cdot E$
(c) $E=I+\Delta$
where Δ, ∇, E and I are forward difference, backward difference, shift and identity operator, respectively.
8. Evaluate the integral $\int_{0.1}^{0.7}\left(e^{x}+2 x\right)$ by taking $h=0.5$, correct up to 5 -decimal places by
(a) Trapezoidal rule
(b) Simpson's $\frac{1}{3}$ rule.
9. Write down the linear function which takes the same values as $f(x)$ at $x=x_{0}, x_{1}$ and integrate it to obtain the Trapezoidal rule for approximation of $f(x)$ over $(0,1)$. Prove that the error is $-\frac{h^{3}}{12} f^{\prime \prime}(\xi)$, where $h=x_{1}-x_{0}$ and $x_{0}<\xi<x_{1}$.
10. Evaluate $\int_{1}^{2} \frac{d x}{x}$, taking 4 -sub intervals, correct up to five decimal places by
(a) Trapizoidal rule
(b) Simson's $\frac{1}{3}$ rule

Also find the absolute error.
11. Let $f(x)=\ln (1+x), x_{0}=1$ and $x_{1}=1.1$. Use linear Lagrange interpolation to calculate an approximate value $f(1.04)$ and obtain an bound on the truncation error.
12. Determine the appropriate step size to use, in the construction of a table of $f(x)=(1+x)^{6}$ on $[0,1]$. The truncation error for linear interpolation is to be bounded by 5×10^{-5}
13. (a) Show that the truncation error of quadratic interpolation in an equidistant table is bounded by

$$
\left(\frac{h^{3}}{9 \sqrt{3}}\right) \max \left|f^{\prime \prime \prime}(\xi)\right|
$$

(b) We want to set up an equidistant table of $f(x)=x^{2} \ln (x)$ in the interval $5 \leq x \leq 10$. The function values are rounded to 5 decimals. Give the step size h which is to be used to yield a total error less than 10^{-5} on quadratic Lagrange interpolation in this table.

