Tutorial Sheet - 5

1. Solve the following system of equations by Gauss-elimination method.
(a)

$$
\begin{aligned}
& x_{1}+4 x_{2}-x_{3}=-5 \\
& x_{1}+x_{2}-6 x_{3}=-12 \\
& 3 x_{1}-x_{2}-x_{3}=4
\end{aligned}
$$

(b)

$$
\begin{aligned}
& 6.32 x_{1}-1.73 x_{2}-0.65 x_{3}+1.06 x_{4}=2.95 \\
& 1.13 x_{1}-0.89 x_{2}+0.61 x_{3}+5.63 x_{4}=4.27 \\
& 0.74 x_{1}+1.01 x_{2}+5.28 x_{3}-1.88 x_{4}=1.97 \\
& 0.89 x_{1}+4.32 x_{2}-0.47 x_{3}+0.95 x_{4}=3.36
\end{aligned}
$$

2. Solve the following equations by (i) Gauss-Jacobi method (ii) Gauss-Seidel method, correct upto four decimal places.
(a)

$$
\begin{aligned}
& 6.32 x_{1}-0.73 x_{2}-0.65 x_{3}+1.06 x_{4}=2.95 \\
& 0.89 x_{1}+4.32 x_{2}-0.47 x_{3}+0.95 x_{4}=3.36 \\
& 0.74 x_{1}+1.01 x_{2}+5.28 x_{3}-0.88 x_{4}=1.97 \\
& 1.13 x_{1}-0.89 x_{2}+0.61 x_{3}+5.63 x_{4}=4.27
\end{aligned}
$$

(b)

$$
\begin{aligned}
& 4.50 x_{1}+0.15 x_{2}+0.30 x_{3}=1.57 \\
& 0.15 x_{1}-10.50 x_{2}+0.45 x_{3}=-3.86 \\
& 0.45 x_{1}+0.30 x_{2}-15.00 x_{3}=14.28
\end{aligned}
$$

(c)

$$
\begin{aligned}
& 2.38 x_{1}+1.95 x_{2}-8.27 x_{3}+1.58 x_{4}=2.16 \\
& 3.21 x_{1}-0.86 x_{2}+2.42 x_{3}-7.20 x_{4}=3.28 \\
& 1.44 x_{1}+6.95 x_{2}-2.14 x_{3}+1.86 x_{4}=1.42 \\
& 9.17 x_{1}+3.62 x_{2}-1.68 x_{3}-2.26 x_{4}=5.21
\end{aligned}
$$

3. Find a root of the equation $x^{3}-4 x-9=0$, using Bisection method, correct upto 4-decimal places.
4. Solve the equation $x^{3}-9 x+1=0$ by Bisection method for the root lying between 2 and 3, correct upto 3-significant figures.
5. Find the positive root of $x^{3}+x-1=0$, by fixed point iteration method, correct upto four decimal places.
6. Find the root of $x^{2}+\ln x-2=0$ which lies between 1 and 2 , by fixed point iteration method, correct upto four decimal places.
7. Find a real root of $3 x=\cos x+1$, by Newton-Raphson method, with an initial guess of $x_{0}=0.6$.
8. Find a real root of $x^{x}+x-4=0$, by Newton-Raphson method, correct to six decimal places, with an initial guess of 1.6.
9. Find the double root of the equation $x^{3}-x^{2}-x+1=0$, by using
(a) $x_{n+1}=x_{n}-m \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$.
(b) Newton-Raphson method.
with an initial guess of $x_{0}=0.9$. Compare the number of iterations.
10. Obtain Newton-Raphson extended formula $x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}-\frac{1}{2} \frac{\left\{f\left(x_{0}\right)\right\}^{2} f^{\prime \prime}\left(x_{0}\right)}{\left\{f^{\prime}\left(x_{0}\right)\right\}^{2}}$ for the root of the equation $f(x)=0$.
11. The equation $x=f(x)$ is solved by the iteration method $x_{k+1}=f\left(x_{k}\right)$ and a solution is wanted with a maximum error not greater than 0.5×10^{-4}. The first and second iterations were computed as : $x_{1}=0.50000$ and $x_{2}=0.52661$. How many iterations must be performed further, if it is known that $\left|f^{\prime}(x)\right| \leqslant 0.53$ for all values of x.
12. Find the interval in which the smallest positive root of the following equation lies: $\tan x+\tanh x=0$
13. Find the n-th root of a positive real number a. Hence find $\sqrt{18}$.
14. The root of the equation $x=\frac{1}{2}+\sin x$ by using the iteration method $x_{k+1}=$ $\frac{1}{2}+\sin x_{k}, k=0,1,2,3 \ldots$ with $x_{0}=1$ correct to six decimals is $x=1.497300$. Determine the number of iteration steps required to reach the root by fixed point iteration method.
15. Find all positive roots to the equation $10 \int_{0}^{x} e^{-x^{2}} d t=1$ correct upto six decimal places.
