Tutorial Sheet - 4

SPRING 2017

MATHEMATICS-II (MA10002)(Linear Algebra)

January 2, 2017

- 1. Find real numbers x, y, z such that A is Hermitian, where $A = \begin{bmatrix} 3 & x+2i & yi \\ 3-2i & 0 & 1+zi \\ yi & 1-xi & -1 \end{bmatrix}$.
- 2. (a) If $(I + A)^{-1}(I A)$ is a real orthogonal matrix, then prove that A is a skew-symmetric matrix.
 - (b) If $(I + A)^{-1}(I A)$ is an unitary matrix, then prove that the matrix A is a Skew-Hermitian matrix.
- 3. (a) If A is a real orthogonal matrix and (I + A) is non-singular, then prove that $(I + A)^{-1}(I A)$ is a skew-symmetric matrix.
 - (b) If A is an unitary matrix and (I + A) is non singular, then prove that the matrix $(I + A)^{-1}(I A)$ is Skew-Hermitian.
- 4. (a) Prove that the eigenvalues of a real symmetric matrix are real.
 - (b) Prove that the eigenvalues of a real skew-symmetric matrix are either purely imaginary or zero.
 - (c) Show that all eigenvalues of a Hermitian matrix are real.
 - (d) Show that the eigenvalues of a real skew-hermitian matrix are either purely imaginary or zero.
- 5. For each of the following matrices, find all the eigenvalues and corresponding eigenvectors.

(i)
$$\begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix}$$
 (ii) $\begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}$ (iii) $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$
(iv) $H = \begin{pmatrix} -1 & 0 & -2i \\ 0 & 2 & 0 \\ 2i & 0 & -1 \end{pmatrix}$ (v) $S = \begin{pmatrix} 0 & i & i \\ i & 0 & i \\ i & i & 0 \end{pmatrix}$.

- 6. Prove that the eigenvalues of an unitary matrix are of modulus 1.
- 7. If λ is an eigenvalue of a Skew-Hermitian matrix, then prove that $\left|\frac{1-\lambda}{1+\lambda}\right| = 1$.
- 8. Verify the Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ and find its inverse. Also, find $\alpha, \beta \in \mathbb{R}$ such that the expression $A^5 4A^4 7A^3 + 11A^2 A 10I$ is of the form $\alpha A + \beta I$.

9. Verify the Cayley-Hamilton theorem for $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$. Using this find A^{-1} , if exists.

10. Examine whether A is similar to B, where

(a)
$$A = \begin{pmatrix} 5 & 5 \\ -2 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 2 \\ -3 & 4 \end{pmatrix}$
(b) $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$

- 11. (a) If A and B are similar, then prove that A and B have the same characteristic polynomial.
 - (b) Is the converse true?
- 12. Which of the following matrices A

$$(i) \begin{pmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{pmatrix} (ii) \begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 2 & 1 & 2 \end{pmatrix} (iii) \begin{pmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 2 \end{pmatrix} (iv) \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}$$

is diagonalizable. If so, obtain an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix.

13. If
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
, then find A^{100} using Cayley-Hamilton theorem.

14. (a) The eigenvectors of a 3×3 matrix A corresponding to the eigenvalues 1, 2, 3 are $[1, 2, 1]^T$, $[2, 3, 4]^T$ and $[1, 4, 9]^T$ respectively. Find the matrix A, and hence find A^{500}

(b) Let A be a 3×3 real matrix having the eigenvalues 2, 3, 1. Let $\begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix}$ be the eigen values of A corresponding to the eigenvalues 2, 3, 1 respectively. Then find the matrix A. And hence find A^n , for any $n \in \mathbb{N}$.