Tutorial Sheet - 4

1. Find real numbers x, y, z such that A is Hermitian, where $A=\left[\begin{array}{ccc}3 & x+2 i & y i \\ 3-2 i & 0 & 1+z i \\ y i & 1-x i & -1\end{array}\right]$.
2. (a) If $(I+A)^{-1}(I-A)$ is a real orthogonal matrix, then prove that A is a skew-symmetric matrix.
(b) If $(I+A)^{-1}(I-A)$ is an unitary matrix, then prove that the matrix A is a SkewHermitian matrix.
3. (a) If A is a real orthogonal matrix and $(I+A)$ is non-singular, then prove that $(I+$ $A)^{-1}(I-A)$ is a skew-symmetric matrix.
(b) If A is an unitary matrix and $(I+A)$ is non singular, then prove that the matrix $(I+A)^{-1}(I-A)$ is Skew-Hermitian.
4. (a) Prove that the eigenvalues of a real symmetric matrix are real.
(b) Prove that the eigenvalues of a real skew-symmetric matrix are either purely imaginary or zero.
(c) Show that all eigenvalues of a Hermitian matrix are real.
(d) Show that the eigenvalues of a real skew-hermitian matrix are either purely imaginary or zero.
5. For each of the following matrices, find all the eigenvalues and corresponding eigenvectors.
(i) $\left(\begin{array}{lll}1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right)$
(ii) $\left(\begin{array}{rrr}1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4\end{array}\right)$
(iii) $\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$
(iv) $H=\left(\begin{array}{ccc}-1 & 0 & -2 i \\ 0 & 2 & 0 \\ 2 i & 0 & -1\end{array}\right)$
(v) $S=\left(\begin{array}{ccc}0 & i & i \\ i & 0 & i \\ i & i & 0\end{array}\right)$.
6. Prove that the eigenvalues of an unitary matrix are of modulus 1 .
7. If λ is an eigenvalue of a Skew-Hermitian matrix, then prove that $\left|\frac{1-\lambda}{1+\lambda}\right|=1$.
8. Verify the Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$ and find its inverse. Also, find $\alpha, \beta \in \mathbb{R}$ such that the expression $A^{5}-4 A^{4}-7 A^{3}+11 A^{2}-A-10 I$ is of the form $\alpha A+\beta I$.
9. Verify the Cayley-Hamilton theorem for $A=\left[\begin{array}{ccc}1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4\end{array}\right]$. Using this find A^{-1}, if exists.
10. Examine whether A is similar to B, where
(a) $A=\left(\begin{array}{cc}5 & 5 \\ -2 & 0\end{array}\right)$ and $\quad B=\left(\begin{array}{cc}1 & 2 \\ -3 & 4\end{array}\right)$
(b) $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $\quad B=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$
11. (a) If A and B are similar, then prove that A and B have the same characteristic polynomial.
(b) Is the converse true?
12. Which of the following matrices A
(i) $\left(\begin{array}{ccc}1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1\end{array}\right)$
(ii) $\left(\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 2 & 1 & 2\end{array}\right)$
(iii) $\left(\begin{array}{ccc}1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 2\end{array}\right)$
(iv) $\left(\begin{array}{ccc}1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4\end{array}\right)$
is diagonalizable. If so, obtain an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix.
13. If $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$, then find A^{100} using Cayley-Hamilton theorem.
14. (a) The eigenvectors of a 3×3 matrix A corresponding to the eigenvalues $1,2,3$ are $[1,2,1]^{T}$, $[2,3,4]^{T}$ and $[1,4,9]^{T}$ respectively. Find the matrix A, and hence find A^{500}
(b) Let A be a 3×3 real matrix having the eigenvalues $2,3,1$. Let $\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ be the eigen values of A corresponding to the eigenvalues $2,3,1$ respectively. Then find the matrix A. And hence find A^{n}, for any $n \in \mathbb{N}$.
