Tutorial Sheet - 3

SPRING 2017

MATHEMATICS-II (MA10002)

1. Find the rank of the matrix A using definition where A is given in the following.
(a) $\left(\begin{array}{ccc}1 & 0 & 3 \\ 4 & -1 & 5 \\ 2 & 0 & 6\end{array}\right)$ (b) $\left(\begin{array}{cccc}2 & 3 & -1 & 1 \\ 3 & 0 & 4 & 2 \\ 6 & 9 & -3 & 3\end{array}\right)$
2. Determine the rank of the following matrices by reducing to row echelon form
(a) $\left(\begin{array}{ccccc}0 & 0 & 2 & 2 & 0 \\ 1 & 3 & 2 & 4 & 1 \\ 2 & 6 & 2 & 6 & 2 \\ 3 & 9 & 1 & 10 & 6\end{array}\right)$
(b) $\left(\begin{array}{llll}1 & 2 & 1 & 0 \\ 2 & 4 & 8 & 6 \\ 3 & 6 & 6 & 3\end{array}\right)$
(c) $\left(\begin{array}{cccc}2 & 0 & 4 & 2 \\ 3 & 2 & 6 & 5 \\ 5 & 2 & 10 & 7 \\ 0 & 3 & 2 & 5\end{array}\right)$
3. Find all x such that the rank of the matrix $\left(\begin{array}{lll}1 & x & x \\ x & 1 & x \\ x & x & 1\end{array}\right)$ is less than 3 .
4. If the distinct roots α, β, γ of the equation $x^{3}+q x+r=0$ are in Arithmetic Progression, then show that the rank of the matrix $\left(\begin{array}{ccc}\alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta\end{array}\right)$ is 2 .
5. Using Gauss elimination method find all possible solutions of the following system of linear equations.
(a) $x+y-z=0$
(b) $x+y-z=0$
(c) $x_{1}-3 x_{2}+2 x_{3}-x_{4}+2 x_{5}=2$
$2 x-3 y+z=0$
$2 x+4 y-z=0$
$3 x_{1}-9 x_{2}+7 x_{3}-x_{4}+3 x_{5}=7$
$x-4 y+2 z=0$
$3 x+2 y+2 z=0$
$2 x_{1}-6 x_{2}+7 x_{3}+4 x_{4}-5 x_{5}=7$
6. Discuss the consistency of the system of equations and solve if possible.

$$
\begin{array}{rrr}
\text { (a) } x_{1}+x_{2}=4 & \text { (b) } x_{1}+2 x_{2}-x_{3}=10 & \text { (c) } x_{1}+3 x_{2}+x_{3}=0 \\
x_{2}-x_{3}=1 & -x_{1}+x_{2}+2 x_{3}=2 & 2 x_{1}-x_{2}+x_{3}=0 \\
+x_{2}+4 x_{3}=7 & 2 x_{1}+x_{2}-3 x_{3}=2 &
\end{array}
$$

7. Find the value of k for which the system of equations has non-trivial solution
(i) $x+y+z=0$
(ii) $(3 k-8) x+3 y+3 z=0$
$y+z=0$
$3 x+(3 k-8) y+3 z=0$
$k y+z=0$
$3 x+3 y+(3 k-8) z=0$
8. Determine the conditions on a and b for which the following system of equations admit (i) unique solution (ii) no solution (iii) infinitely many solutions.
(a) $x+2 y-z-t=0$
$2 x+5 y+z+t=8$
(b) $x+y+z=1$
(c) $x-y+z=1$
$x+2 y-z=b$
$x+2 y+4 z=a$
$3 x+7 y+2 z+2 t=b$
$-x+z+a t=16$

$$
5 x+7 y+a z=b^{2} \quad x+4 y+6 z=a^{2}
$$

9. If the following system

$$
\begin{aligned}
a x+b y+c z & =0 \\
b x+a y+a z & =0 \\
c x+a y+b z & =0
\end{aligned}
$$

has non trivial solution, then prove that $a+b+c=0$ or $a=b=c$.
10. Express the matrix $A=\left(\begin{array}{ccc}1 & 2+i & 1-i \\ 2-i & 1+2 i & 3 \\ 2+i & 2 & 1+i\end{array}\right)$ as the sum of a Hermitian and a SkewHermitian matrix.
11. If $A=\left(\begin{array}{ccc}2+i & 3 & -1+3 i \\ -5 & i & 4-2 i\end{array}\right)$, then show that $A A^{*}$ is a Hermitian matrix, where A^{*} is conjugate transpose of A.
12. If A is real and non symmetric matrix of order 3 , then prove that the rank of the matrix $A-A^{T}$ is 2 .
13. Show that the matrix $\left(\begin{array}{cc}\alpha+i \gamma & -\beta+i \delta \\ \beta+i \delta & \alpha-i \gamma\end{array}\right)$ is unitary matrix if $\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}=1$.
14. If $M=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & a^{2} & a \\ 1 & a & a^{2}\end{array}\right)$, where $a=e^{\frac{2 i \pi}{3}}$, then prove that $M^{-1}=\frac{1}{3} \bar{M}$.

