Tutorial Sheet - 2

SPRING 2017

MATHEMATICS-II (MA10002)(Linear Algebra)

January 9, 2017

- 1. Determine which of the following forms a basis of the respective vector spaces: (a) {(1,5,-6), (2,1,8), (3,-1,4)} of \mathbb{R}^3 , (b) {1, x - 2, (x - 2)^2, (x - 2)^3} of \mathbb{P}_3 , (c) {1, sin x, sin² x, cos² x} of C[- π , π], (d) { $\begin{pmatrix} 3 & 6 \\ 3 & -6 \end{pmatrix}$, $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & -8 \\ -12 & 4 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}$ } of $M_{2\times 2}$.
- 2. Let U be the subspace of \mathbb{C}^5 defined by $U = \{(z_1, z_2, z_3, z_4, z_5) \in \mathbb{C}^5 : 6z_1 = z_2, z_3 + 2z_4 + 3z_5 = 0\}$. Find a basis of U.
- 3. Determine the basis and dimension of the following subspaces (a) $U = \{(x, y, z) \in \mathbb{R}^3 : x + 2y + z = 0, 2x + y + 3z = 0\}$ of \mathbb{R}^3 , (b) $U = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 : x_1 + x_2 + x_3 = 0, 3x_1 - x_4 + 7x_5 = 0\}$ of \mathbb{R}^5 .
- 4. (a) Let $U = \{p \in \mathbb{P}_3 : p(1) = 0\}$ and $W = \{p \in \mathbb{P}_3 : p'(1) = 0\}$. Then find $dim(U \cap W)$ and dim(U + W).
 - (b) Let $U = \{ p \in \mathbb{P}_4 : \int_{-1}^1 p = 0 \}$
 - (i) Find a basis and dimension of U,
 - (ii) Extend the basis in part (a) to a basis of \mathbb{P}_4 .
- 5. Check the following mappings are linear transformation or not: (a) $T : \mathbb{R}^3 \to \mathbb{R}^3$, defined by T(x, y, z) = (x + 2y + 3z, 3x + 2y + z, x + y + z), $\forall (x, y, z) \in \mathbb{R}^3$, (b) $T : \mathbb{R}^3 \to \mathbb{R}^2$, defined by T(x, y, z) = (|x|, y + z), $\forall (x, y, z) \in \mathbb{R}^3$, (c) $T : \mathbb{P}_3 \to \mathbb{P}_4$ defined by T(p(x)) = xp(x) + p(1), $\forall p(x) \in \mathbb{P}_3$, (d) $T : M_{2 \times 2} \to M_{2 \times 2}$ defined by $T(A) = \frac{A + A^T}{2}$, $\forall A \in M_{2 \times 2}$.
- 6. Give an example of a function $\phi : \mathbb{C} \to \mathbb{C}$, such that $\phi(w+z) = \phi(w) + \phi(z) \forall w, z \in \mathbb{C}$. But ϕ is not linear. (Here \mathbb{C} is a vector space over \mathbb{C}).
- 7. Find the null space and range space of the following linear transformations. Also find their respective dimensions and verify the rank-nullity theorem:
 (a) T: ℝ³ → ℝ³, defined by T(x, y, z) = (x + y + z, 2x + y + 2z, x + 2y + z), ∀(x, y, z) ∈ ℝ³
 (b) T: M_{2×2} → M_{2×2} defined by T(A) = A + A^T/2, ∀A ∈ M_{2×2}
 (c) T: ℝ² → ℝ², defined by T(x, y) = (x + y/2, x + y/2), ∀(x, y) ∈ ℝ².
 (d) T: ℝ³ → ℝ, defined by T(x, y, z) = x + y + z, ∀(x, y, z) ∈ ℝ³.

- 8. Find the linear transformations : (a) $T : \mathbb{R}^3 \to \mathbb{R}$ where T(1, 1, 1) = 3, T(0, 1, -2) = 1, T(0, 0, 1) = -2. (b) $T : \mathbb{R}^3 \to \mathbb{R}^3$ where $T(e_1) = e_1 - e_2$, $T(e_2) = 2e_1 + e_3$, $T(e_3) = e_1 + e_2 + e_3$. $\{e_1, e_2, e_3\}$ is the usual basis of \mathbb{R}^3 . (c) $T : \mathbb{R}^3 \to \mathbb{R}^3$ where T(2, 1, 1) = (1, 1, 1), T(1, 2, 1) = (1, 1, 1), T(1, 1, 2) = (1, 1, 1).
- 9. Find the matrix of the linear transformations w.r.t. the given bases: (a) $T : \mathbb{R}^3 \to \mathbb{R}^3$, defined by $T(x, y, z) = (x + y + z, x + z, x + y) (x, y, z) \in \mathbb{R}^3$: with respect to the basis $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$.
 - (b) $D: \mathbb{P}_3 \to \mathbb{P}_3$ defined by $D(p(x)) = \frac{d^2}{dx^2}(p(x))$, w.r.t. the basis $\{1, x, x^2, x^3\}$,
 - (c) $T : \mathbb{P}_3 \to \mathbb{P}_4$ defined by $T(p(x)) \stackrel{a.x}{=} (2+x)p(x)$, w.r.t. the basis $\{1, x, x^2, x^3\}$ and $\{1, x, x^2, x^3, x^4\}$ respectively,

10. (i) Suppose $T : \mathbb{R}^4 \to \mathbb{R}^2$ such that $N(T) = \{(x, y, z, w) \in \mathbb{R}^4 : x = 5y, z = 7w\}$. Prove that T is surjective.

(ii) U is a 3-dimensional subspace of \mathbb{R}^8 and $T : \mathbb{R}^8 \to \mathbb{R}^5$ is a linear map such that N(T) = U. Prove that T is surjective.

(iii) Prove that there does exist not a linear map $T : \mathbb{R}^5 \to \mathbb{R}^5$ such that R(T) = N(T).

(iv) Prove that there does not exist a linear map from \mathbb{R}^5 to \mathbb{R}^2 where null space is $\{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 : x_1 = 3x_2, x_3 = x_4 = x_5\}.$