Tutorial Sheet - 2

SPRING 2017
MATHEMATICS-II (MA10002)(Linear Algebra)
January 9, 2017

1. Determine which of the following forms a basis of the respective vector spaces:
(a) $\{(1,5,-6),(2,1,8),(3,-1,4)\}$ of \mathbb{R}^{3},
(b) $\left\{1, x-2,(x-2)^{2},(x-2)^{3}\right\}$ of \mathbb{P}_{3},
(c) $\left\{1, \sin x, \sin ^{2} x, \cos ^{2} x\right\}$ of $C[-\pi, \pi]$,
(d) $\left\{\left(\begin{array}{ll}3 & 6 \\ 3 & -6\end{array}\right),\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right),\left(\begin{array}{cc}0 & -8 \\ -12 & 4\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ -1 & 2\end{array}\right)\right\}$ of $M_{2 \times 2}$.
2. Let U be the subspace of \mathbb{C}^{5} defined by
$U=\left\{\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right) \in \mathbb{C}^{5}: 6 z_{1}=z_{2}, z_{3}+2 z_{4}+3 z_{5}=0\right\}$. Find a basis of U.
3. Determine the basis and dimension of the following subspaces
(a) $U=\left\{(x, y, z) \in \mathbb{R}^{3}: x+2 y+z=0,2 x+y+3 z=0\right\}$ of \mathbb{R}^{3},
(b) $U=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in \mathbb{R}^{5}: x_{1}+x_{2}+x_{3}=0,3 x_{1}-x_{4}+7 x_{5}=0\right\}$ of \mathbb{R}^{5}.
4. (a) Let $U=\left\{p \in \mathbb{P}_{3}: p(1)=0\right\}$ and $W=\left\{p \in \mathbb{P}_{3}: p^{\prime}(1)=0\right\}$. Then find $\operatorname{dim}(U \bigcap W)$ and $\operatorname{dim}(U+W)$.
(b) Let $U=\left\{p \in \mathbb{P}_{4}: \int_{-1}^{1} p=0\right\}$
(i) Find a basis and dimension of U,
(ii) Extend the basis in part (a) to a basis of \mathbb{P}_{4}.
5. Check the following mappings are linear transformation or not:
(a) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, defined by $T(x, y, z)=(x+2 y+3 z, 3 x+2 y+z, x+y+z), \forall(x, y, z) \in \mathbb{R}^{3}$,
(b) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$, defined by $T(x, y, z)=(|x|, y+z), \forall(x, y, z) \in \mathbb{R}^{3}$,
(c) $T: \mathbb{P}_{3} \rightarrow \mathbb{P}_{4}$ defined by $T(p(x))=x p(x)+p(1), \forall p(x) \in \mathbb{P}_{3}$,
(d) $T: M_{2 \times 2} \rightarrow M_{2 \times 2}$ defined by $T(A)=\frac{A+A^{T}}{2}, \forall A \in M_{2 \times 2}$.
6. Give an example of a function $\phi: \mathbb{C} \rightarrow \mathbb{C}$, such that $\phi(w+z)=\phi(w)+\phi(z) \forall w, z \in \mathbb{C}$. But ϕ is not linear. (Here \mathbb{C} is a vector space over \mathbb{C}).
7. Find the null space and range space of the following linear transformations. Also find their respective dimensions and verify the rank-nullity theorem:
(a) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, defined by $T(x, y, z)=(x+y+z, 2 x+y+2 z, x+2 y+z), \forall(x, y, z) \in \mathbb{R}^{3}$
(b) $T: M_{2 \times 2} \rightarrow M_{2 \times 2}$ defined by $T(A)=\frac{A+A^{T}}{2}, \forall A \in M_{2 \times 2}$
(c) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, defined by $T(x, y)=\left(\frac{x+y}{2}, \frac{x+y}{2}\right), \forall(x, y) \in \mathbb{R}^{2}$.
(d) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}$, defined by $T(x, y, z)=x+y+z, \forall(x, y, z) \in \mathbb{R}^{3}$.
8. Find the linear transformations :
(a) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}$ where $T(1,1,1)=3, T(0,1,-2)=1, T(0,0,1)=-2$.
(b) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ where $T\left(e_{1}\right)=e_{1}-e_{2}, T\left(e_{2}\right)=2 e_{1}+e_{3}, T\left(e_{3}\right)=e_{1}+e_{2}+e_{3} .\left\{e_{1}, e_{2}, e_{3}\right\}$ is the usual basis of \mathbb{R}^{3}.
(c) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ where $T(2,1,1)=(1,1,1), T(1,2,1)=(1,1,1), T(1,1,2)=(1,1,1)$.
9. Find the matrix of the linear transformations w.r.t. the given bases:
(a) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, defined by $T(x, y, z)=(x+y+z, x+z, x+y)(x, y, z) \in \mathbb{R}^{3}$: with respect to the basis $\{(1,0,0),(0,1,0),(0,0,1)\}$.
(b) $D: \mathbb{P}_{3} \rightarrow \mathbb{P}_{3}$ defined by $D(p(x))=\frac{d^{2}}{d x^{2}}(p(x))$, w.r.t. the basis $\left\{1, x, x^{2}, x^{3}\right\}$,
(c) $T: \mathbb{P}_{3} \rightarrow \mathbb{P}_{4}$ defined by $T(p(x))=(2+x) p(x)$, w.r.t. the basis $\left\{1, x, x^{2}, x^{3}\right\}$ and $\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$ respectively,
10. (i) Suppose $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ such that $N(T)=\left\{(x, y, z, w) \in \mathbb{R}^{4}: x=5 y, z=7 w\right\}$. Prove that T is surjective.
(ii) U is a 3-dimensional subspace of \mathbb{R}^{8} and $T: \mathbb{R}^{8} \rightarrow \mathbb{R}^{5}$ is a linear map such that $N(T)=U$. Prove that T is surjective.
(iii) Prove that there does exist not a linear map $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{5}$ such that $R(T)=N(T)$.
(iv) Prove that there does not exist a linear map from \mathbb{R}^{5} to \mathbb{R}^{2} where null space is $\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in \mathbb{R}^{5}: x_{1}=3 x_{2}, x_{3}=x_{4}=x_{5}\right\}$.
