Tutorial Sheet - 10

MATHEMATICS-II (MA10002)

1. Evaluate $\iiint_{D} 2 x d V$, where E is the region under the plane $2 x+3 y+z=6$ that lies in the first octant.
2. Evaluate $\iiint \frac{d x d y d z}{(x+y+z+1)^{3}}$, over a tetrahedron bounded by coordinate planes and the plane $x+y+z=1$.
3. Using spherical coordinates evaluate
(i) $\iiint_{D}\left(x^{2}+y^{2}+z^{2}\right)^{m} d x d y d z, m>0$, over the region $D=\left\{(x, y, z) ; x^{2}+y^{2}+z^{2} \leq 1\right\}$.
(ii) $\iiint_{D} \sqrt{x^{2}+y^{2}+z^{2}} d x d y d z, \mathrm{D}$ is the region bounded by the plane $z=3$ and cone $z=\sqrt{x^{2}+y^{2}}$.
4. Using cylindrical coordinates evaluate
(i) $\iiint_{D} \sqrt{x^{2}+y^{2}} d x d y d z$, where D is region lying above $x y$-plane and below cone $z=$ $4-\sqrt{x^{2}+y^{2}}$.
(ii) $\iiint_{D} y$, where D is the region that lies below the plane $z=x+2$ above the $x y$-plane and between the cylinders $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.
5. Find the surface area of the cylinder $x^{2}+z^{2}=4$ inside the cylinder $x^{2}+y^{2}=4$.
6. Find the surface area of the section of the cylinder $x^{2}+y^{2}=a^{2}$ made by the plane $x+y+z=a$.
7. Find the area of the part of the surface of the paraboloid $y^{2}+z^{2}=2 a x$ which lies between the cylinder $y^{2}=a x$ and the plane $x=a$.
8. Find the volume bounded by the surfaces $z=4-x^{2}-\frac{y^{2}}{4}$ and $z=3 x^{2}+\frac{y^{2}}{4}$.
9. Find the volume bounded by the cylinder $x^{2}+y^{2}=4$ and the planes $y+z=4$ and $z=0$.
10. Find the volume cut off from the paraboloid $x^{2}+\frac{y^{2}}{4}+z=1$ by the plane $z=0$.
11. Find the volume of the solid bounded by the sphere $x^{2}+y^{2}+z^{2}=4$ and the paraboloid $x^{2}+y^{2}=3 z$
12. Evaluate

$$
\int_{0}^{\frac{\pi}{2}} \log \left(\alpha \cos ^{2} \theta+\beta \sin ^{2} \theta\right) d \theta, \quad(\alpha>0, \beta>0)
$$

13. Evaluate

$$
\int_{0}^{\infty} e^{-\alpha x} \frac{\sin \beta x}{x} d x, \quad \text { where } \alpha \geq 0
$$

hence deduce that

$$
\int_{0}^{\infty} \frac{\sin \beta x}{x} d x= \begin{cases}\frac{\pi}{2}, & \text { ift } \beta>0 \\ 0, & \text { ift } \beta=0 \\ -\frac{\pi}{2}, & \text { ift } \beta<0\end{cases}
$$

14. Show that

$$
\int_{0}^{\infty} \frac{\tan ^{-1} \alpha x \tan ^{-1} \beta x}{x^{2}} d x=\frac{\pi}{2} \log \left[\frac{(\alpha+\beta)^{\alpha+\beta}}{\alpha^{\alpha} \beta^{\beta}}\right]
$$

