Department of Mathematics
 IIT Kharagpur
 MA20103 Partial Differential Equations

Mid-Autumn 2016, Time: 2 hrs.; Max. Marks: 30, Number of students: 424

Note: Please follow the notations and instructions carefully. Answer all the questions. prime (${ }^{\prime}$): denotes derivative with respect to x. No queries will be entertained during the examination.

1. [4 marks] Find two linearly independent power series solutions of the ODE: $\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+$ $4 y=0$ about $x=0$.
2. [2 marks] Express the polynomial $3 x^{4}+6 x^{2}-2$ in terms of Legendre polynomials $P_{n}(x)$.
3. [2 marks] Let $f(x)$ be a polynomial of degree $n \geq 1$ such that

$$
\int_{-1}^{1} x^{k} f(x) d x=0
$$

for $k=0,1, \ldots,(n-1)$. Using orthogonality of Legendre polynomials, show that $f(x)=$ $c P_{n}(x)$ for some constant c.
4. [2 marks] Using the recurrence relation $(2 n-1) x P_{n-1}(x)=n P_{n}(x)+(n-1) P_{n-2}(x)$, evaluate

$$
\int_{-1}^{1} x^{2} P_{n+1}(x) P_{n-1}(x) d x
$$

Express the final answer in the form $\frac{f(n)}{g(n)}$ for some functions $f(n)$ and $g(n)$.
5. [6 marks] Using the series representation of $n^{t h}$ order Bessel functions $J_{n}(x)$ given by

$$
J_{n}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma(n+k+1)}\left(\frac{x}{2}\right)^{n+2 k}
$$

(a) find the value of $\operatorname{Lim}_{x \rightarrow 0} \frac{J_{n}(x)}{x^{n}}$, (b). Evaluate $x^{-n} J_{n+1}(x)+\frac{d}{d x}\left(x^{-n} J_{n}(x)\right)$, and (c) Compute $J_{-\frac{1}{2}}(x)$ and express in terms of trigonometric functions.
6. [4 marks] Form a second order PDE by eliminating the arbitrary functions f and g from the relation $z=x f(x+y)+g(x+y)$, (z : dependent variable; x, y : independent variables).
7. [5 marks] Consider the linear second order ODE with variable coefficients given by $x y^{\prime \prime}+4 y^{\prime}-$ $x y=0$, for which we seek series solution using Frobenius method, about $x=0$. Let $f(r)=0$ denote the indicial equation whose roots are r_{1}, r_{2} such that $r_{1}>r_{2}$. Then (a). Compute r_{1} and r_{2}. (b). Derive the recurrence relation for the coefficients of the series solution corresponding to r_{1} and hence obtain the series solution. (c). Derive the recurrence relation for the coefficients of the series solution corresponding to r_{2} and obtain the series solution. (d). Write down explicitly the general solution as a linear combination of two independent solutions.
8. [5 marks] Use Lagrange's method to find the general solution of $x(y-z) \frac{\partial z}{\partial x}+y(x+z) \frac{\partial z}{\partial y}=$ $(x+y) z$. Hence, find a particular integral passing through $z=x^{2}-1$ on $y=x$. (z : dependent variable; x, y : independent variables).

