

Mathematics-I

FUNCTIONS OF SEVERAL VARIABLES

- (a) Limit.
- (b) Repeated/ Iterated Limit.
- (c) Partial Derivatives of First Order.
- (d) Partial Derivatives of Higher

Order.

Dr. Ratna Dutta Department of Mathematics Indian Institute of Technology Kharagpur -721 302

Mathematics I.

(Autumn 2015)

Lectures 10-12

,

Functions of Sevenal Variables · Z=f(x,y) スキダキマニー. f(x1, x2,..., xn). S-nbd. of apt." . - y = b + d y=b-8 2= a+ 6 x=a-5. 12-0128, 14-6128. $(\chi - q)^{L} + (\gamma - b)^{L}$ < 52

Limit.

$$f(x,y) \rightarrow defined over a certain
domain S.
 $(a,b) \rightarrow a$ cluster bf .
 $f(x,y) \rightarrow (a,b) = A$.
 $(a,y) \rightarrow (a,b)$
 $(a,b) \rightarrow (a,b)$
 $(a,$$$

9		A must be unique, along
	arhatern	path we may approach to
	(a,b).	
		(/ ()))
Example: $\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^2 - y^2}{x^2 + y^2}$		
	= lim x -> 0 y -> 0	
	y = **	$= \lim_{n \to 0} \frac{1 - m^{2}}{1 + m^{2}}$
		- 1
		(diffunt for diffuent value (tm).
5	>th doubh	limit does nit exist.

· Repeated / Iterated Limit.

$$\lim_{y\to b} \left\{ \begin{array}{ll} \lim_{x\to a} f(x,y) \right\}, \lim_{x\to a} \left\{ \begin{array}{ll} \lim_{y\to b} f(x,y) \right\}, \\ y\to b \end{array} \right\}$$

Exampl:
$$f(my) = \frac{ny}{n+y}$$

* $\lim_{(x,y) \to (0,1)} f(x,y) = \frac{m}{1+m} = j desnet$ exist. alng J=mg . * lim $\int \lim_{x \to 0} \frac{f(x, y)}{\int z} = \lim_{x \to 0} \frac{f(x, y)}{\int x \to 0} \int z = 0.$ lim { lim f(x,x)] = lim {0}=0. y=>0 { 2=>0 Note: If repeated limits existed an unequal, then the double

+ Converse in not true.

Example:
$$f(x,y) = \frac{x+y}{x-y}$$
.
lim $\{lim \quad f(x,y)\} = \lim_{x \to 0} 1 = 1$
 $\lim_{y \to 0} \{lim \quad f(x,y)\} = \lim_{y \to 0} (-1) = -1$.
 $\lim_{y \to 0} \{lim \quad f(x,y)\} does not exist.$
 $= \lim_{(x,y) \to (0,0)} f(x,y) = \int 2 \sin\left(\frac{1}{y}\right) + y \sin\left(\frac{1}{x}\right) x + y = 0$
 $\lim_{(x,y) \to (0,0)} f(x,y) = \int 2 \sin\left(\frac{1}{y}\right) + y \sin\left(\frac{1}{x}\right) x + y = 0$
Repeated limits do not exist.
 $\int ut \quad double \quad limit \quad exist.$
 $\int ut \quad double \quad exist.$

i.e. to prove that

$$4 \ge >0$$
 (however Arnall may be
chosen), $\exists a \le >0$ (depending on $\ge)$ At
 $|f(x_{y})-o| < \ge Column |x-o| < 5, |y-o| < \le Column |x-o| < 5, |y-o| < \le$
 $\frac{y = y \cos \theta}{y = x \sin \theta}$.
 $|x \le y = \cos \theta$
 $|x = y \cos \theta$
 $|x = y \cos \theta$
 $|x = y \cos \theta$
 $|y = x \sin \theta$.
 $|x \le y \le \frac{1}{2} \cdot \frac$

Example: lim
$$(x^{L}+2y)=5^{-1}$$
.
 $(x,y) \rightarrow (1,2)$
Wing E-S approach.
Sel? $4 \ge 50$, web. Arnall, $7 \le 50$ At
 $|x^{L}+2y-5| < \varepsilon$ otherwow $|x-1|< \xi < 4$
 $|y-2|< \xi$.
Ut $|x-1|< \xi$, $|y-2|< \xi$.
 $|y-2|< \xi$.
 $|x^{L}+2y-5| = |x^{L}-1+2y-4|$
 $\leq |x^{L}-1|+2|y-2|$.
 $|x-1<\xi = > 1-\xi < x < 1+\xi$.
 $1-2\xi+\xi^{L} < x^{L} < 1+2\xi+\xi^{L}$
 $(-3\xi < -2\xi+\xi^{L} < x^{L}-1 < 2\xi+\xi^{L} < 3\xi$
 $\xi < 1-\xi\xi < \xi$.

() => $|x^2+2y-5| \le 3\delta+2\delta=5\delta=\epsilon.$ achemen |x-1/63, 14-2128 (0<051).

Exampl: $\lim_{(\gamma,\gamma)\to(0,0)} \frac{\chi^4 \chi^4}{(\chi^2+\chi^4)^3} \quad denot$ exist. dong x = myt. Example $\lim_{(m,y)\to(0,1)} \frac{|x|}{y^{2}} e^{-|x|/y^{2}}.$ Along x=my -> limit=0. \rightarrow $limit=\frac{1}{e}$. Along x=y2

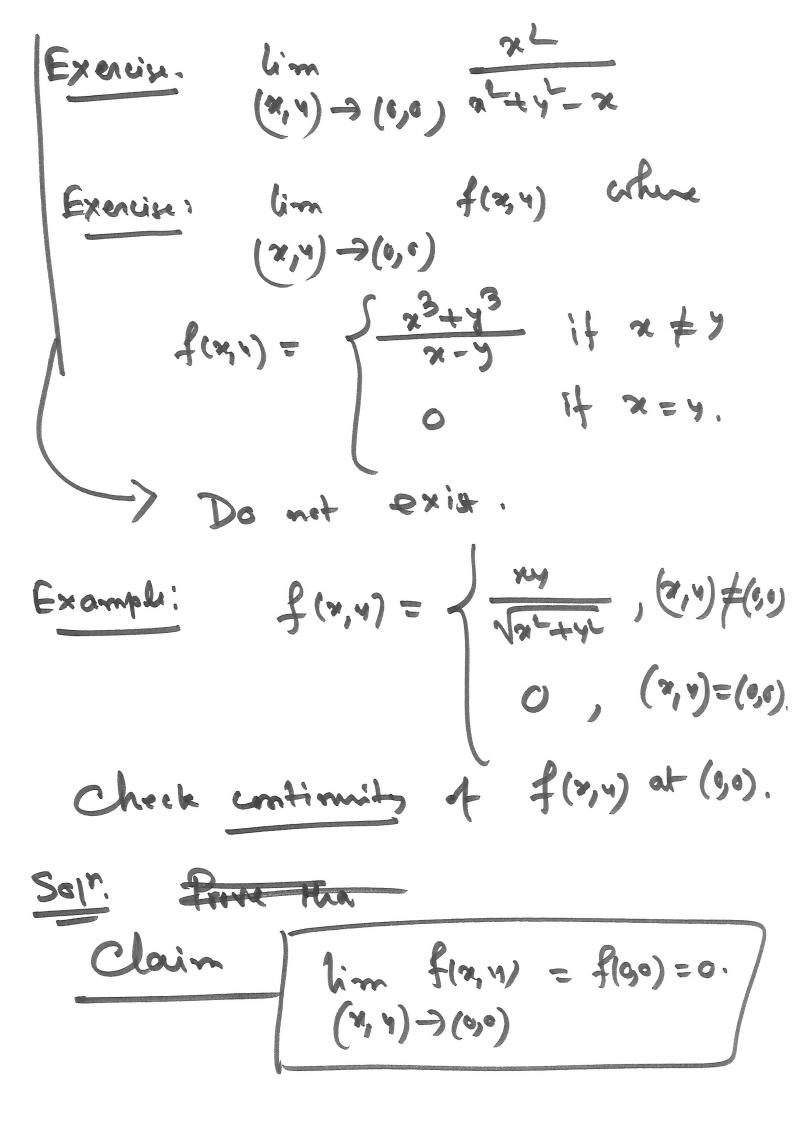
Example:
$$f(x, y) = \int \frac{2(x^3 + y^3)}{x^4 + 2y} , (x, y) \neq (y)$$

Show that f in (not) continuous
 $at (0, 0)$
 $(x, y) = (0, 0)$
 $(a, y) = (0, 0)$
 $(a, y) = (0, 0)$
 $(a, y) = f(0, 0)$
 $(a, y) = (0, 0)$
 $(a, y) = (0$

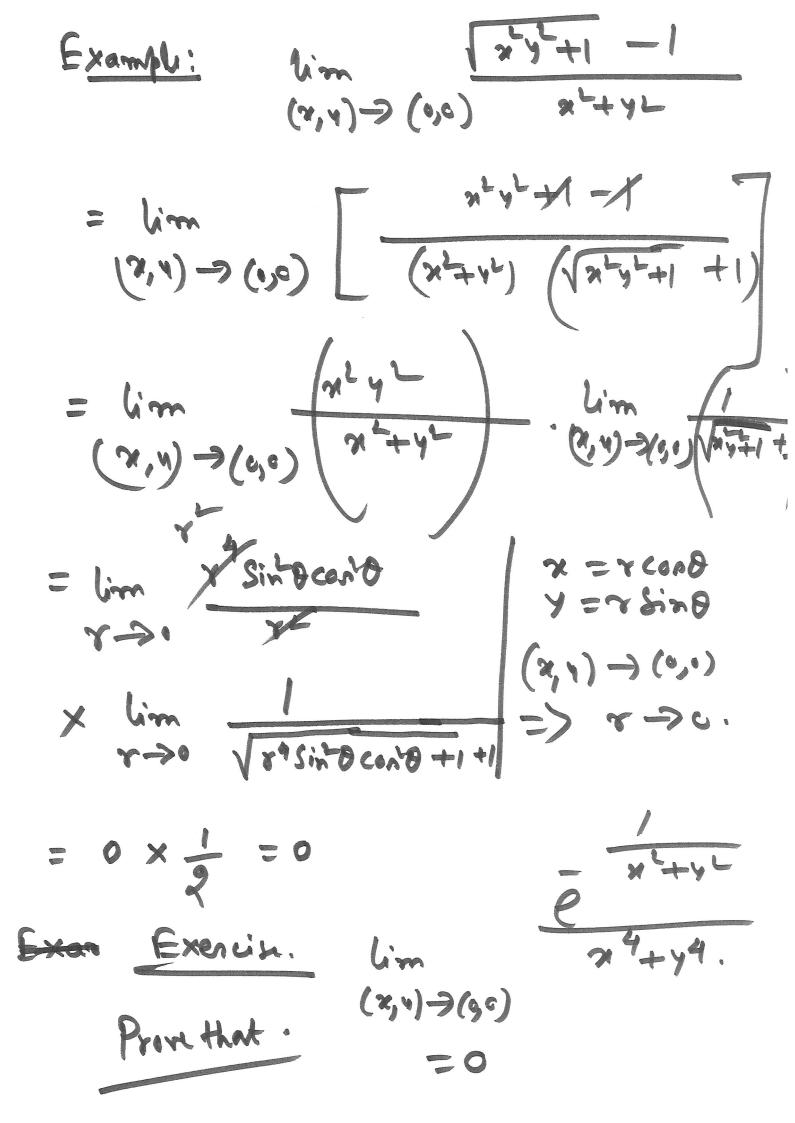
Solt. Along , y = mx $\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{x\to 0} \frac{2x^3(1+m^3)}{x(x+2m)}$ y=mx Along path 2: $y = -\frac{\pi}{2}e^{\chi}$ $\lim_{(Y,Y)\to(0,0)}f(Y,Y)=-2.$ $\mathcal{J} = -\frac{\alpha}{2}e^{\alpha}$ Not double limit lim f(x, y) does not exist $(2, y) \rightarrow (0, 0)$ => & so f(3,4) is not continue

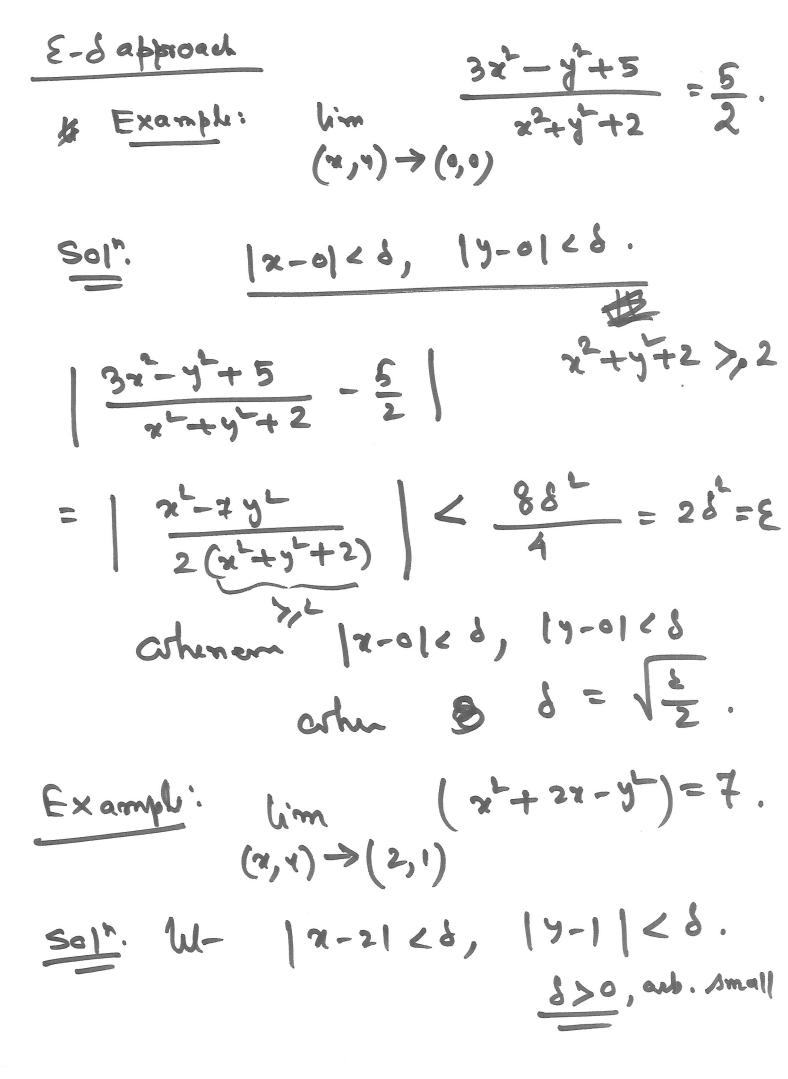
Algebra of limits.
Algebra of limits.

$$f(x,y), g(x,y) \rightarrow dufined on dome
 $ybd. of (g,b)$.
 $\lim_{(x,y) \rightarrow (g,b)} f(x,y) \rightarrow (g,y) = m.$
 $(x,y) \rightarrow (g,b) = lim f \pm lim g.$
 $(x,y) \rightarrow (g,b) = lim f \pm lim g.$
 $(x,y) \rightarrow (g,b) = lim f \pm lim g.$
 $(x,y) \rightarrow (g,b) = lim f.$ $\lim_{(x,y) \rightarrow (g,b)} = lim f.$
 $\lim_{(x,y) \rightarrow (g,b)} \lim_{(x,y) \rightarrow (f,g)} \frac{lim f}{lim g} = lm$
 $\lim_{(x,y) \rightarrow (f,g)} \lim_{(x,g) \rightarrow (f,g)} \frac{lim f}{lim g} = lm$
 $\lim_{(x,y) \rightarrow (f,g)} \lim_{(x,g) \rightarrow (f,g)} \frac{lim f}{lim g} = lm$
 $\lim_{(x,y) \rightarrow (f,g)} (x^2 + 2y) \neq 5.$
 $(x,y) \rightarrow (f,g) \rightarrow (f,g)$
 $= \lim_{(x,y) \rightarrow (f,g)} (y^2) + \lim_{(x,y) \rightarrow (f,g)} (2y)$
 $(x,y) \rightarrow (f,g) \rightarrow (f,g)$$$



i.e.
$$\forall E > 0$$
 (arb. β malt), $\exists d > 0$
A.t. $|f(x_1y) - 0| < E$
Cohomern $|x-0| < \delta$, $|y-0| < \delta$.
proof of the daim
 $|f(x_1y) - 0| = |\frac{2cy}{\sqrt{x^2+y^2}} - 0|$.
 $= |\frac{y^2 \sin \theta \cos \theta}{y}|$ $\forall x = \gamma \cos \theta$
 $= |\frac{y^2 \sin \theta \cos \theta}{y}| < \frac{y}{2} < E$
Cohomer $x^2 + y^2 < (2E)^2 = 4E^2$
i.e. $x^2 < 2E^2$, $y^2 < 2E^2$
i.e. $|x-0| < (2E)^2 = 4E^2$
i.e. $|x-0| < (2E)^2$, $|y-0| < \sqrt{2E}$.
Chosen $y = \sqrt{2}E$
 $= |x + y^2 < 2E^2$
 $= |x + y^2 < |x + y^2 < 2E^2$
 $= |x + y^2 < |x$



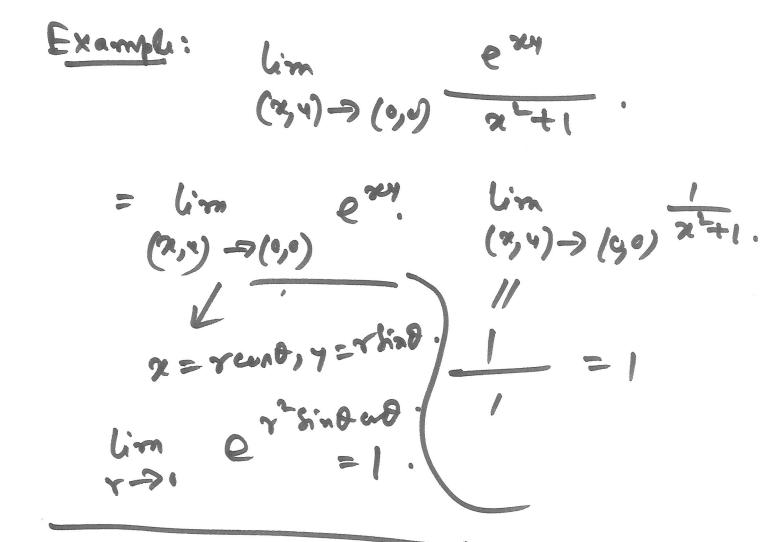


$$|x^{t}+2x-y^{t}-7| = |(x-z)^{t}-(y-1)^{t}+C(x-2) -2(y-1)| \\ < 2\delta^{t}+8\delta < E \\ chook & \delta > \delta + \delta \\ 2\delta^{t}+8\delta < E \\ i.e. & \delta^{t}+4\delta < \frac{2}{2} \\ (\delta+2)^{t} < \frac{2}{2}+4. \\ or & \delta < \sqrt{\frac{2+8}{2}}-2. \\ |x-2| < \delta, |y-2| < \delta \\ crhon & \delta < \sqrt{\frac{2+8}{2}}-2. \\ \end{cases}$$

Example:
$$\lim_{K \to \infty} (1 + x^{k}y^{k})^{-1} = \frac{1}{x^{k} + y^{k}}$$

Example: $(x_{1}y_{1}) \rightarrow (0, 0)$
Example: $= 1$.
Sol^N: $k = (1 + x^{k}y^{k})^{-1} = \frac{1}{x^{k} + y^{k}}$
 $\lim_{k \to 0} u = -\frac{1}{x^{k} + y^{k}} \log (1 + x^{k}y^{k})$.
 $\lim_{k \to \infty} u = r \cosh , \quad y = r \sin \theta$.
 $(3_{1}y_{1}) \rightarrow (0, 0) \implies r \rightarrow 0$.
 $\lim_{k \to 0} \log u = -\lim_{k \to 0} \frac{1}{r} \log (1 + r^{4} \sin^{2} \theta)$
 $r \rightarrow 0$
 $\lim_{k \to 0} \log u = -\lim_{k \to 0} \frac{1}{r} \log (1 + r^{4} \sin^{2} \theta)$
 $= -\lim_{k \to 0} \frac{1 \times 4y^{k} \sin^{2} \theta \cos^{2} \theta}{(1 + r^{4} \sin^{2} \theta) \cos^{2} \theta} \frac{(0, 0)}{(1 + r^{4} \sin^{2} \theta) \cos^{2} \theta} \frac{(1 + r^{4} \sin^{2} \theta)}{(1 + r^{4} \sin^{2} \theta) \cos^{2} \theta} \frac{(1 + r^{4} \sin^{2} \theta)}{(1 + r^{4} \sin^{2} \theta) \cos^{2} \theta} \frac{(1 + r^{4} \sin^{2} \theta)}{(1 + r^{4} \sin^{2} \theta) \cos^{2} \theta} \frac{(1 + r^{4} \sin^{2} \theta)}{(1 + r^{4} \sin^{2} \theta) \cos^{2} \theta} \frac{(1 + r^{4} \sin^{2} \theta)}{(1 + r^{4} \sin^{2} \theta) \cos^{2} \theta} \frac{(1 + r^{4} \sin^{2} \theta)}{(1 + r^{4} \sin^{2} \theta) \cos^{2} \theta} \frac{(1 + r^{4} \sin^{2} \theta)}{(1 + r^{4} \sin^{2} \theta) \cos^{2} \theta} \frac{(1 + r^{4} \sin^{2} \theta)}{(1 + r^{4} \sin^{2} \theta) \cos^{2} \theta} \frac{(1 + r^{4} \sin^{2} \theta)}{(1 + r^{4} \sin^{2} \theta) \cos^{2} \theta} \frac{(1 + r^{4} \sin^{2} \theta)}{(1 + r^{4} \sin^{2} \theta) \cos^{2} \theta} \frac{(1 + r^{4} \sin^{2} \theta)}{(1 + r^{4} \sin^{2} \theta) \cos^{2} \theta} \frac{(1 + r^{4} \sin^{2} \theta)}{(1 + r^{4} \sin^{2} \theta) \cos^{2} \theta} \frac{(1 + r^{4} \sin^{2} \theta)}{(1 + r^{4} \sin^{2} \theta) \cos^{2} \theta} \frac{(1 + r^{4} \sin^{2} \theta)}{(1 + r^{4} \sin^{2} \theta) \cos^{2} \theta} \frac{(1 + r^{4} \sin^{2} \theta)}{(1 + r^{4} \sin^{2} \theta) \cos^{2} \theta} \frac{(1 + r^{4} \sin^{2} \theta)}{(1 + r^{4} \sin^{2} \theta) \cos^{2} \theta} \frac{(1 + r^{4} \sin^{2} \theta)}{(1 + r^{4} \sin^{2} \theta) \cos^{2} \theta} \frac{(1 + r^{4} \sin^{2} \theta)}{(1 + r^{4} \sin^{2} \theta) \cos^{2} \theta} \frac{(1 + r^{4} \sin^{2} \theta)}{(1 + r^{4} \sin^{2} \theta) \cos^{2} \theta} \frac{(1 + r^{4} \sin^{2} \theta)}{(1 + r^{4} \sin^{2} \theta) \cos^{2} \theta} \frac{(1 + r^{4} \sin^{2} \theta)}{(1 + r^{4} \sin^{2} \theta) \cos^{2} \theta} \frac{(1 + r^{4} \sin^{2} \theta)}{(1 + r^{4} \sin^{2} \theta) \cos^{2} \theta} \frac{(1 + r^{4} \sin^{2} \theta)}{(1 + r^{4} \sin^{2} \theta) \cos^{2} \theta} \frac{(1 + r^{4} \sin^{2} \theta)}{(1 + r^{4} \sin^{2} \theta) \cos^{2} \theta} \frac{(1 + r^{4} \sin^{2} \theta)}{(1 + r^{4} \sin^{2} \theta) \cos^{2} \theta} \frac{(1 + r^{4} \sin^{2} \theta)}{(1 + r^{4} \sin^{2} \theta) \cos^{2} \theta} \frac{(1 + r^{4} \sin^{2} \theta)}{(1 + r^{4} \sin^{2} \theta) \cos^{2} \theta} \frac{(1 + r^{4} \sin^{2} \theta)}{(1 + r^{4} \sin^{2} \theta) \cos^{2} \theta} \frac{(1 + r^{4} \sin^{2} \theta)}{(1 + r^{4} \sin^{2} \theta) \cos$

=> lime = e = 1. Aug.



Partial Derivatives of 1st. order · f (*, *) orna region R. • $f_{x}(x,y) = \lim_{h \to 0} f(x+h, y) - f(x,y)$ 2f (x, y) f(x, y+k) - f(x, y)· fy (7,4) = lim $\frac{\partial f}{\partial y}(\alpha, y)$ K→0 K Easy generalization · u == f(x,1, z) Fx, fy, fz 과 왕 것. L'uy Luz

Example:
$$f(x,v) = \frac{n+y-1}{n+y+1}$$

 $f_x(2,1) = ?$ $f_y(2,1) = ?$
 $\frac{5e!^{n}}{f_x(2,1)} = \lim_{h \to 0} \frac{f(2+h,1)-f(3+1)}{h}$
 $f_x(2,1) = \lim_{h \to 0} \frac{f(2+h,1)-f(3+1)}{h}$
 $f_x(2,1) = \lim_{h \to 0} \frac{f(2+h,1)-f(3+1)}{h}$
 $f_y(3,1) = \lim_{h \to 0} \frac{f(2,1+h)-f(3+1)}{h}$
 $f_y(3,1) = \lim_{h \to 0} \frac{f(2,1+h)-f(3+1)}{h}$
 $f_y(3,1) = \lim_{h \to 0} \frac{f(2,1+h)-f(3+1)}{h}$
 $f_y(3,1) = \frac{1}{8}$
Alternatively, $f_x(2,1+1) = \frac{2}{(n+y+1)} = \frac{2}{(n+y+1)}$
 (di) (unitiating $f(2y_1)$ (u.v.t. $x_{1,1}$
 $f_x(2,1) = \frac{1}{8}$.

Example:
$$f(x,y) = \int \frac{2\pi y}{x^{L}+y^{L}}, x^{L}+y^{L}\neq 0.$$

 $\int \frac{1}{y} (0, \cdot) = ?, \quad fy(0, y) = ?, \quad y = 0.$
 $\int \frac{1}{y} (0, \cdot) = ?, \quad y = 0.$
 $f(x,y) \rightarrow net \quad continuous \quad at(0, \cdot).$
 $f(x,y) \rightarrow (x,y) \rightarrow (y,y)$
 $does \quad not \quad exist$
 $does \quad$

Continuity of
$$f(x_{1}, y)$$
 at (g_{1})
. lim $f(x_{2}, y)$ exist
 $(x_{2}, y) \rightarrow (g_{2}, y)$
. $f(g_{1}) \rightarrow (g_{2}, y)$
. $f(g_{2}) \rightarrow (g_{2}, y) = f(g_{1})$.
 $(g_{1}, y) \rightarrow (g_{2})$
Example: $f(x_{2}, y) = \int \frac{2}{x^{2} + 2y} (x_{2}, y) f(y)$
 $\int (g_{1}, y) = \int \frac{2}{x^{2} + 2y} (x_{2}, y) f(y)$
 $\int (g_{1}, y) = \int \frac{2}{x^{2} + 2y} (x_{2}, y) f(y)$
 $\int (g_{1}, y) = (g_{2})$.
Shrew that $f_{1}(g_{2}), f_{2}(g_{2}) \neq x_{2}$
Also flows that f in not continuous
 $at (g_{2})$.
 $f_{1}(g_{1}) = 2$
 $f_{1}(g_{2}) = 0$

Partial Univatives of higher order . 1 (2,2) · 1st. orden fre (2,4), fr (2,4) > themelves fund of 2,4 · 2nd. order · fra (2,1) = $\frac{\partial}{\partial z} (f_z)$ $= \frac{\partial}{\partial 2} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial f}{\partial x}$ • fyy $(2, 1) = \frac{2}{3y} = \frac{2}{3y} \left(\frac{2}{3y}\right)$. • $f_{xy}(x,y) = \frac{\partial}{\partial x}(f_y) = \frac{\partial f}{\partial x \partial y}$ $f_{yx}(x,y) = \frac{\partial}{\partial y}(f_x) = \frac{\partial f}{\partial y \partial x}$ 3rd orden faxx, fayx,..., fury Ingennal $\frac{\partial f}{\partial f} = \frac{\partial}{\partial x} \left(\frac{\partial^2 f}{\partial x^{n-1}} \right)$

 $\frac{\partial \hat{f}}{\partial y \partial x^{n-1}} = \frac{\partial}{\partial y} \left(\frac{\partial^n \hat{f}}{\partial x^{n-1}} \right)$ · fry (a, b) = fyr (a, b) $f_{xy}(q_b) = \lim_{h \to 0} \frac{f_y(a+h, b) - f_y(a,b)}{h}$ $\frac{\partial}{\partial x}(f_y)$ $F(h_k)$ = $\lim_{h \to 0} \lim_{k \to 0} \left[f(a+h, b+k) - f(a+h,b) - f(a+h,b) - f(a+h,b) - f(a,b+k) + f(a,b) \right]$ F lim lim F(h,k)h->, k->, F(h,k)hk fyx (9,b) = lim lim F(h,k)k->, h->, h->, hk

Example:

$$f(x_y) = \frac{x+y}{x-y}$$

 $f(x_y) = \frac{x+y}{x-y}$
 $f(x_y) = \frac{x+y}{x-$

 $f_{24}(0,0) = \lim_{n \to \infty} f_{y}(h,0) - f_{y}(0,0)$ f(h,k) - f(h,o)14 hk - 0f(0, k) - f(0,0) Ly (0,0) lim h-c h->0 fry 0,0)