

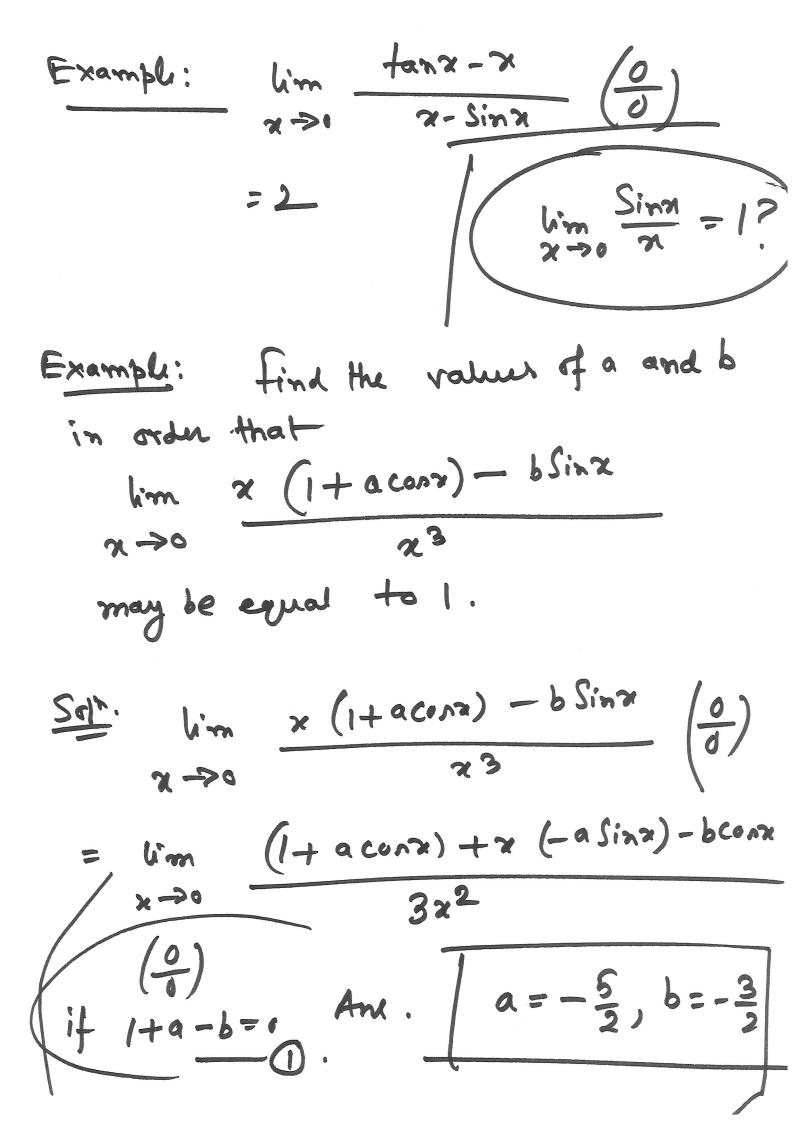
Mathematics-I

INDETERMINATE FORM: L'HOSPITAL RULE

Dr. Ratna Dutta Department of Mathematics Indian Institute of Technology Kharagpur 721302

Indeterminate Forms: L'Hospital's Rule.
A> Form
$$\frac{O}{O}$$

 $f(x) \Rightarrow O$ $fg(x) \Rightarrow O$ as $x \Rightarrow a$.
 $f(x) \Rightarrow O$ $fg(x) \Rightarrow O$ as $x \Rightarrow a$.
 TO evaluate $\lim_{x \to a} \frac{f(x)}{g(x)}$.
L'Hastital's Rule for $\frac{O}{O}$ form
 $f, g \Rightarrow the fund. R.t$.
 $f, g' exists for $g'(x) \neq O$ the form
 f, g' exists $fg'(x) \neq O$ the form
 $f x \in (a - \delta, a + \delta), \ \delta > O, \ except$
 $f x \in (a - \delta, a + \delta), \ \delta > O, \ except$
 $f x = a \frac{f'(x)}{g'(x)} = x = a \frac{f'(x)}{g'(x)}$
thum $\lim_{x \to a} \frac{f'(x)}{g'(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$



$$Y = \lim_{k \to 0} \frac{-a \sin x - a \sin x + xa \cos x}{+b \sin x}$$

$$= \lim_{k \to 0} \frac{-2a \cos x + a \cos x - xa \sin x}{-b \cos x}$$

$$= \lim_{k \to 0} \frac{-2a \cos x + a \cos x - xa \sin x}{-b \cos x}$$

$$= \lim_{k \to 0} \frac{-2a \cos x + a \cos x - xa \sin x}{-b \cos x}$$

$$= \lim_{k \to 0} \frac{-2a \cos x + a \cos x - xa \sin x}{-b \cos x}$$

$$= \lim_{k \to 0} \frac{-2a \cos x + a \cos x - xa \sin x}{-b \cos x}$$

$$= \lim_{k \to 0} \frac{-2a \cos x + a \cos x - xa \sin x}{-b \cos x}$$

$$= \lim_{k \to 0} \frac{-2a \cos x + a \cos x - xa \sin x}{-b \cos x}$$

$$= \lim_{k \to 0} \frac{-2a \cos x + a \cos x - xa \sin x}{-b \sin x}$$

$$= \lim_{k \to 0} \frac{-2a \cos x + a \cos x - xa \sin x}{-b \cos x}$$

$$= \lim_{k \to 0} \frac{-2a \cos x + a \cos x - xa \sin x}{-b \cos x}$$

$$= \lim_{k \to 0} \frac{-2a \cos x + a \cos x - xa \sin x}{-b \cos x}$$

$$= \lim_{k \to 0} \frac{-2a \cos x + a \cos x - xa \sin x}{-b \cos x}$$

$$= \lim_{k \to 0} \frac{-2a \cos x + a \cos x - xa \sin x}{-b \cos x}$$

$$= \lim_{k \to 0} \frac{-2a \cos x + a \cos x - xa \sin x}{-b \cos x}$$

$$= \lim_{k \to 0} \frac{-2a \cos x + a \cos x - xa \sin x}{-b \cos x}$$

$$= \lim_{k \to 0} \frac{-2a \cos x + a \cos x - xa \sin x}{-b \cos x}$$

$$= \lim_{k \to 0} \frac{-2a \cos x + a \cos x - xa \sin x}{-b \cos x}$$

$$= \lim_{k \to 0} \frac{-2a \cos x + a \cos x - xa \sin x}{-b \cos x}$$

$$= \lim_{k \to 0} \frac{-2a \cos x + a \cos x}{-b \cos x}$$

$$= \lim_{k \to 0} \frac{-2a \cos x + a \cos x}{-c \cos x}$$

$$= \lim_{k \to 0} \frac{-2a \cos x + a \cos x}{-c \cos x}$$

$$= \lim_{k \to 0} \frac{-2a \cos x + a \cos x}{-c \cos x}$$

$$= \lim_{k \to 0} \frac{-2a \cos x}{-c \cos x}$$

$$= \lim_{k \to 0} \frac{-2a \cos x}{-c \cos x}$$

$$= \lim_{k \to 0} \frac{-2a \cos x}{-c \cos x}$$

$$= \lim_{k \to 0} \frac{-2a \cos x}{-c \cos x}$$

$$= \lim_{k \to 0} \frac{-2a \cos x}{-c \cos x}$$

$$= \lim_{k \to 0} \frac{-2a \cos x}{-c \cos x}$$

$$= \lim_{k \to 0} \frac{-2a \cos x}{-c \cos x}$$

other Indeterminate Forms. c >OX & > reducible to gor #. ì) f(x)g(x) 0Xd reducible to ii) d-d f(n) - g(n) (d-d) $= f(x)g(x)\left[\frac{1}{g(n)} - \frac{1}{f(n)}\right] \cdot (A \times 0)$ 0, ~, 1±~ iù) $(f(n))^{g(n)} \longrightarrow 0^{\circ}$ I take Log (v×~) g(x) Log ff(x))

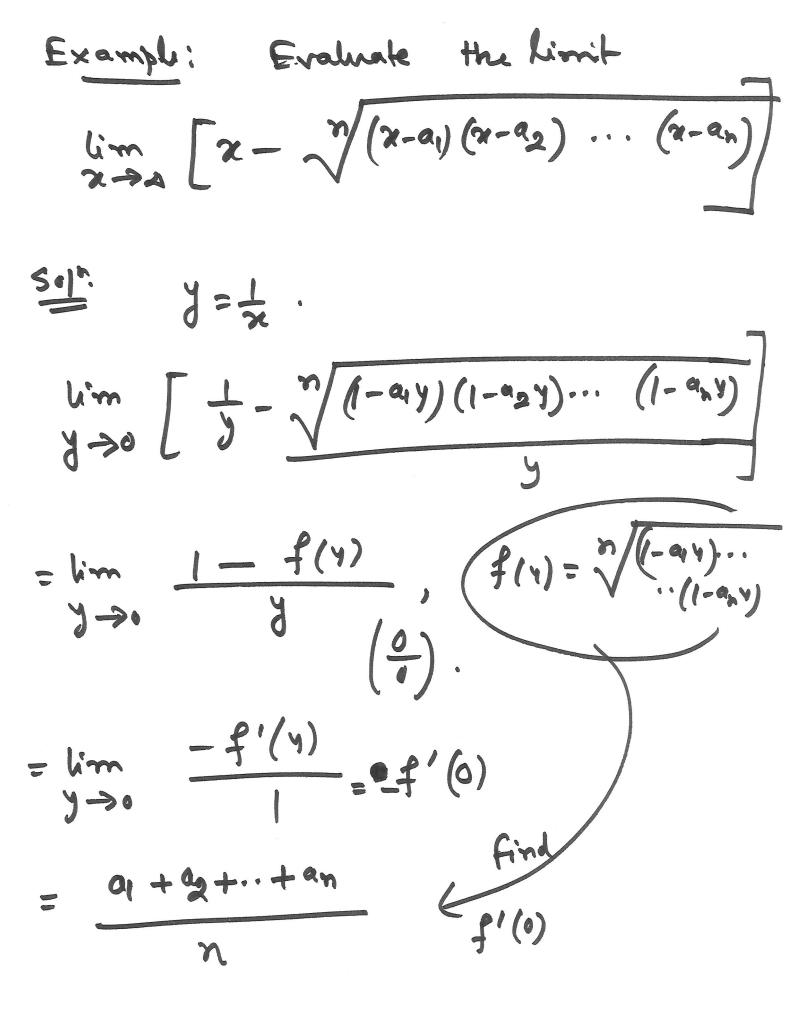
Example:

 $\operatorname{cot} x \cdot \log \frac{1+x}{1-x} (\operatorname{od} x \circ)$ ともの : 2

Example :

lim (Sinz) 270 = | .

Example: $a - \sqrt{a^2 - x^2} - \frac{x^2}{4}$ $let L = \lim_{x \to 0} x \to 0$ 21 a>0. If L'is finite, then prove that L= 1/64. Sol- a= 2

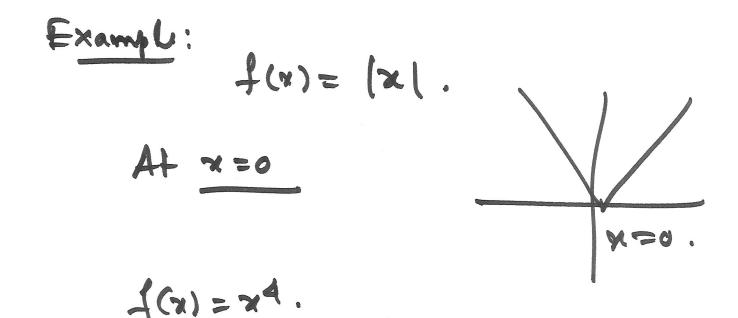


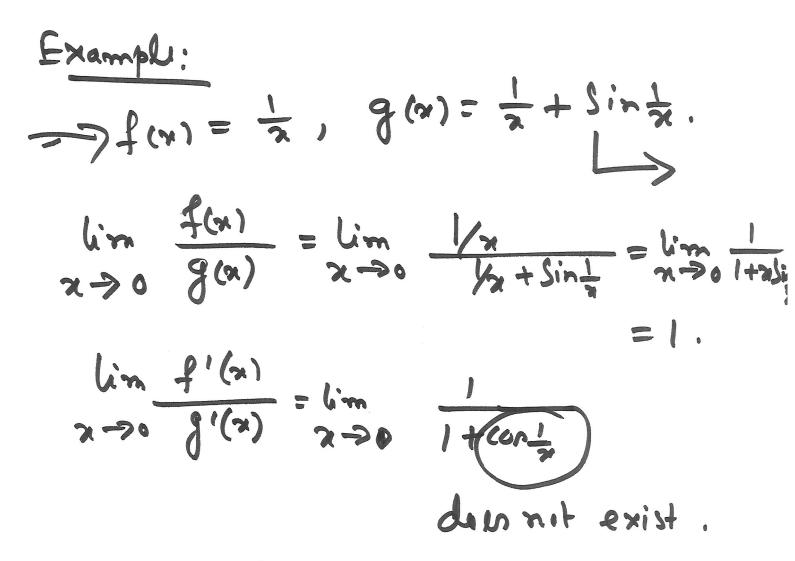
Example: If
$$\lim_{x \to 0} \left[1 + x \ln (1+b^{\perp}) \right]^{\frac{1}{2}}$$

= $2b \sin^{2} \theta$, $b > 0$
and $\theta \in (-\pi, \pi)$, thun prove that
the value of θ is $\pm \frac{\pi}{2}$.
Solⁿ. We $u = \left[1 + x \ln (1+b^{\perp}) \right]^{\frac{1}{2}}$.
 $\lim_{x \to 0} \ln u = \lim_{x \to 0} \frac{2}{\pi} \ln \left[1 + x \ln (1+b^{\perp}) \right]$.
 $\lim_{x \to 0} \ln u = \lim_{x \to 0} \frac{2}{\pi} \ln \left[1 + x \ln (1+b^{\perp}) \right]$.
i.e. $\ln \lim_{x \to 0} u = \lim_{x \to 0} \frac{1}{\pi} \frac{x \ln (1+b^{\perp})}{(1+b^{\perp})}$.
 $= \ln (1+b^{\perp})$.
 $= \ln (1+b^{\perp})$.

 \Rightarrow Sinto = $\frac{1+b^{\perp}}{2b}$ > 1 1+6-26=(1-6) But sin 20 ≤ 1 1+62 > 26 >0. \Rightarrow Sin² $\theta = 1$ \Rightarrow Sin $\theta = \pm 1$ ⇒ 0=±£. as $Q \in (-\pi,\pi)$.

Exercise: $\lim_{x \to 0} \left[\frac{1}{2^{L}} - \frac{1}{2^{L} - 2^{L} - 2^{L} - 2^{L} - \frac{1}{3}} \right] = \frac{1}{3}$ i) $\lim_{x \to 0} \left[(\sin x)^{\frac{1}{2}} + \left(\frac{1}{2}\right)^{\sin x} \right] = 1$ ii) $\lim_{x \to 0} \left[(\sin x)^{\frac{1}{2}} + \left(\frac{1}{2}\right)^{\frac{1}{2}} \right] = 1$ iii) $\frac{1}{2^{L} - 2^{L}}}$ iv) $\frac{1}{2^{L} - 2^{L}}} = 1$ iv) $\frac{1}{2^{L} - 2^{L}}}{\frac{1}{2^{L} - 2^{$





Example: $\overline{e}^{2\pi} \frac{(\operatorname{Conx} + 2\operatorname{Sinx})}{\overline{e}^{2} (\operatorname{Conx} + 3\operatorname{Sinx})} = f(\pi)$ downet exist. l'Hospital's rules. i), ii) an Satisfied. Condition (iii) is violated.