Post-quantum Cryptography

(September 2022)

Dr. Ratna Dutta
Associate Professor, IIT Kharagpur

Department of Mathematics
IIT Kharagpur

Why Post Quantum Crypto?

- Quantum computers will break the most popular public-key cryptosystems:
- RSA.
- DSA.
- ECDSA.
- ECC.
- HECC, ...
can be attacked in polynomial time using Shor's algorithm.
- Post Quantum Crypto brings solution to this threat.

Post Quantum Crypto

Post-quantum cryptography deals with cryptosystems that

- run on conventional computers
- are secure against attacks by quantum computers.

Examples:

- Hash-based cryptography.
- Code-based cryptography.
- Lattice-based cryptography.
- Multivariate-quadratic-equations cryptography.
- Isogeny-based cryptography.

Lattice-based hash function with two inputs

Let n, q, k, m positive integers where: n is the security parameter; $q=O(n)$; $k=\lfloor\log q\rfloor, m=2 n k$ and $\mathbb{Z}_{q}=\{0, \ldots, q-1\}$. The "powers-of-2" matrix is defined by

$$
G=\left[\begin{array}{ccccc}
124 \ldots 2^{k-1} & & & & \\
& 124 \ldots 2^{k-1} & & \\
& & \ldots & \\
& & & & 124 \ldots 2^{k-1}
\end{array}\right]
$$

A Family of Lattice-Based Collision-Resistant Hash Function

The function family \mathcal{H} mapping from $\{0,1\}^{n k} \times\{0,1\}^{n k}$ to $\{0,1\}^{n k}$ is defined as $\mathcal{H}=\left\{h_{A} \mid A \in \mathbb{Z}_{q}^{n \times m}\right\}$, where for $A=\left[A_{0} \mid A_{1}\right]$ with $A_{0}, A_{1} \in \mathbb{Z}_{q}^{n \times n k}$, and for any $\left(\mathbf{u}_{0}, \mathbf{u}_{1}\right) \in\{0,1\}^{n k} \times\{0,1\}^{n k}$, we have

$$
h_{A}\left(\mathbf{u}_{0}, \mathbf{u}_{1}\right)=\operatorname{bin}\left(A_{0} \cdot \mathbf{u}_{0}+A_{1} \cdot \mathbf{u}_{1}(\bmod \mathrm{q})\right)
$$

Note that, $h_{A}\left(\mathbf{u}_{0}, \mathbf{u}_{1}\right)=\mathbf{u} \Longleftrightarrow A_{0} \cdot \mathbf{u}_{0}+A_{1} \cdot \mathbf{u}_{1}=G \cdot \mathbf{u}(\bmod q)$

Lattice-based Hardness Assumption

Short integer solution(SIS) problem

The $S I S_{n, m, q, \beta}^{\infty}$ problem is as follows: Given uniformly random matrix $A \in \mathbb{Z}_{q}^{n \times m}$, find a non-zero vector $x \in \mathbb{Z}^{m}$ such that $\|x\|_{\infty} \leq \beta$ and $A \cdot x=0(\bmod q)$.

dRLWE problem

Let $q, m, n, \sigma>0$ depend on security parameter (q, m, n are integers). The decision-RLWE problem ($d R L W E_{q, n, m, \sigma}$) is to distinguish between:
$\left(a_{i}, a_{i} \cdot s+e_{i}\right)_{i \in[m]} \in\left(R_{q}\right)^{2}$ and $\left(a_{i}, u_{i}\right)_{i \in[m]} \in\left(R_{q}\right)^{2}$ for $a_{i}, u_{i} \leftarrow R_{q}$ and $s, e_{i} \leftarrow R\left(\chi_{\sigma}\right)$.

Merkle-Tree Accumulator

Acc.Setup $(\lambda) \longrightarrow$ param $_{\text {Acc }}$

Sample $A \stackrel{\Phi}{\longleftarrow} \mathbb{Z}_{q}^{n \times m}$ and set param Acc $=A$. All the following algorithm takes input param Acc implicitly.

$$
\operatorname{Acc} \text {. Accumulate }\left(\mathcal{R}=\left\{\mathbf{d}_{0} \in\{0,1\}^{n k}, \ldots, \mathbf{d}_{N-1} \in\{0,1\}^{n k}\right\}\right) \rightarrow \mathbf{u}
$$

(i) For $j=1,2, \ldots, N-1$, represent $\mathbf{d}_{j} \in\{0,1\}^{n}$ as $\mathbf{u}_{j_{1}, j_{2}, \ldots, j_{1}}$ for the binary representation $\left(j_{1}, j_{2}, \ldots, j_{l}\right) \in\{0,1\}^{\prime}$ of j where $I=\lceil\log N\rceil$.
(ii) Build a binary tree with $N=2^{\prime}$ leaves $\mathbf{u}_{0,0, \ldots, 0}, \ldots, \mathbf{u}_{1,1, \ldots, 1}$ and compute the accumulated value

$$
\mathbf{u}_{a_{1}, a_{2}, \ldots, a_{i}}=h_{A}\left(\mathbf{u}_{a_{1}, a_{2}, \ldots, a_{i}, 0}, \mathbf{u}_{a_{1}, a_{2}, \ldots, a_{i}, 1}\right)
$$

for the nodes with values $\mathbf{u}_{a_{1}, a_{2}, \ldots, a_{i}, 0}, \mathbf{u}_{a_{1}, a_{2}, \ldots, a_{i}, 1} \in\{0,1\}^{n}$ and for all $\left(a_{1}, a_{2} \ldots, a_{i}\right) \in\{0,1\}^{i}$ at depth $i=1,2, \ldots, I-1$.
(iii) At depth 0 , compute the accumulated value $\mathbf{u}=h_{A}\left(\mathbf{u}_{0}, \mathbf{u}_{1}\right)$ at root for the node values at $\mathbf{u}_{0}, \mathbf{u}_{1} \in\{0,1\}^{n}$.

Merkle-Tree Accumulator: Acc.Accumulate

Merkle-Tree Accumulator

Acc. WitGen $\left(\operatorname{param}_{\text {Acc }}, \mathcal{R}, \mathbf{d}\right) \longrightarrow$ wit

(i) If $\mathbf{d} \notin \mathcal{R}$, output \perp.
(ii) If $\mathbf{d} \in \mathcal{R}$, then $\mathbf{d}_{j}=\mathbf{d}$ for some j.
(iii) Represent \mathbf{d}_{j} as $\mathbf{u}_{j_{1}, j_{2}, \ldots, j_{i}}$ where $\left(j_{1}, j_{2}, \ldots, j_{l}\right)$ is the binary representation of j. (iv) Set the witness

$$
\text { wit }=\left(\left(j_{1}, j_{2}, \ldots, j_{l}\right),\left(\mathbf{w}_{l}, \mathbf{w}_{l-1}, \ldots, \mathbf{w}_{1}\right)\right) \in\{0,1\}^{\prime} \times\left(\{0,1\}^{n}\right)^{\prime}
$$

Merkle-Tree Accumulator: Acc.WitGen

Merkle-Tree Accumulator

$\operatorname{Acc.Verify}\left(\mathbf{u}, \mathbf{d}\right.$, wit $\left.=\left(\left(j_{1}, j_{2}, \ldots, j_{l}\right),\left(\mathbf{w}_{l}, \mathbf{w}_{l-1}, \ldots, \mathbf{w}_{1}\right)\right)\right) \longrightarrow 0 / 1$
Find the values $\mathbf{v}_{I}, \mathbf{v}_{I-1} \ldots, \mathbf{v}_{0}$ by setting $\mathbf{v}_{I}=\mathbf{d}$ and computing

$$
\mathbf{v}_{i}= \begin{cases}h_{A}\left(\mathbf{v}_{i+1}, \mathbf{w}_{i+1}\right) & \text { if } j_{i+1}=0 \\ h_{A}\left(\mathbf{w}_{i+1}, \mathbf{v}_{i+1}\right) & \text { if } j_{i+1}=1\end{cases}
$$

for $i=I-1, \ldots, 1,0$.
If $\mathbf{v}_{0}=\mathbf{u}$, output 1 , otherwise return 0 .

Lemma

The given accumulator scheme is secure assuming the hardness of the $S I S_{n, m, q, \beta}^{\infty}$ problem.

Merkle-Tree Accumulator: Acc.Verify

Pseudo-random Function (PRF)

Setup $(\lambda) \longrightarrow\left(\mathbf{b}_{0}, \mathbf{b}_{1}\right)$
Let $R=\frac{\mathbb{Z}[X]}{\left\langle X^{n}+1\right\rangle}$ and $R_{q}:=R / q R$ and $I=\left\lceil\log _{2} q\right\rceil$. Fix some $\mathbf{b}_{0}, \mathbf{b}_{1} \in R_{q}^{1 \times I}$. Ten set params $=\left(\mathbf{b}_{0}, \mathbf{b}_{1}\right)$. All the following algorithm takes params implicitly.

$\operatorname{KeyGen}(\lambda) \longrightarrow k$

The key generation algorithm samples k from $R_{q}\left(\chi_{\sigma}\right)$, where χ_{σ} discrete Gaussian distribution over R_{q} with parameter σ.

Evaluation $(\mathbf{x}) \longrightarrow F_{k}(\mathbf{x})$

For input $\mathbf{x}=\left(x_{1}, \ldots, x_{L}\right) \in\{0,1\}^{L}$. Define

$$
\mathbf{b}_{\mathbf{x}}:=\mathbf{b}_{x_{1}} \cdot G^{-1}\left(\mathbf{b}_{x_{2}} \cdot G^{-1}\left(\mathbf{b}_{x_{3}} \cdot G^{-1} \ldots\left(\mathbf{b}_{x_{L-1}} \cdot G^{-1}\left(b_{x_{L}}\right)\right)\right)\right) \in R_{q}^{1 \times I}
$$

PRF is defined as

$$
F_{k}(\mathbf{x})=\left\lceil\mathbf{b}_{\mathbf{x}} \cdot k\right\rfloor_{p}=\left\lceil\frac{p}{q} \cdot \mathbf{b}_{\mathbf{x}} \cdot k\right\rfloor
$$

where $p \mid q$.

Pseudo-random Function (PRF)

Theorem

Sample $k \leftarrow R\left(\chi_{\sigma}\right)$. If $q \gg p \cdot \sigma \cdot \sqrt{L} \cdot n \cdot l$, then the function $F_{k}(\mathbf{x})=\left\lceil\mathbf{b}_{\mathbf{x}} \cdot k\right\rfloor_{p}$ is a PRF under the $d R L W E_{q, n, \sigma}$ assumption.

Signature Scheme by B. Libert et. al

Let λ be the security parameter. Let $m_{1}, m_{2}, m_{3}, \sigma, q, L$ be positive integers that are polynomial in λ. Let $k=\lfloor\log q\rfloor$. The signature scheme works as follows:

$\operatorname{KeyGen}(\lambda) \rightarrow\left(s k=\mathbf{T}, p k=\left(\mathbf{B},\left\{\mathbf{B}_{i}\right\}_{i \in\left[0, m_{3}\right]}, \mathbf{u}, \tilde{\mathbf{B}}, \tilde{\mathbf{B}}_{0}, \tilde{\mathbf{B}}_{1}\right)\right)$

On input the security parameter λ, the key generation algorithm first samples a random matrix $\mathbf{B} \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}^{m_{1} \times m_{2}}$ together with its trapdoor \mathbf{T}. Then it samples
$\mathbf{B}_{i} \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}^{m_{1} \times m_{2}}$ for $i \in\left[0, m_{3}\right]$ and samples $\tilde{\mathbf{B}} \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}^{m_{1} \times m_{2}}, \tilde{\mathbf{B}}_{0} \stackrel{\S}{\leftarrow} \mathbb{Z}_{q}^{m_{1} \times 2 m_{2}}$, $\tilde{\mathbf{B}}_{1} \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}^{m_{1} \times L}$ and $\mathbf{u} \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}^{m_{1}}$. Finally, it outputs sk=T and $p k=\left(\mathbf{B},\left\{\mathbf{B}_{i}\right\}_{i \in\left[0, m_{3}\right]}, \mathbf{u}, \tilde{\mathbf{B}}, \tilde{\mathbf{B}}_{0}, \tilde{\mathbf{B}}_{1}\right)$.

Signature Scheme by B. Libert et. al

Sign $(s k=\mathbf{T}) \rightarrow(\boldsymbol{\tau}, \mathbf{v}, \mathbf{r})$

On input the secret key \mathbf{T} and a message $\mathbf{m} \in\{0,1\}^{L}$, the sign algorithm first samples $\boldsymbol{\tau} \stackrel{\$}{\leftarrow}\{0,1\}^{m_{3}}$. Then it computes the matrix
$\mathbf{B}_{\boldsymbol{\tau}}=\left(\mathbf{B} \| \mathbf{B}_{0}+\sum_{i=1}^{m_{3}}\left(\tau[i] \cdot \mathbf{B}_{i}\right)\right)$. Next, it samples $\mathbf{r} \stackrel{\$}{\leftarrow} D_{\sigma}^{2 m_{2}}$ and computes $\mathbf{c}=\tilde{\mathbf{B}}_{0} \cdot \mathbf{r}+\tilde{\mathbf{B}}_{1} \cdot \mathbf{m}$. Then it uses the secret key \mathbf{T} to samples a vector $\mathbf{v} \in D_{\sigma}^{2 m_{2}}$ that satisfies $\mathbf{B}_{\boldsymbol{\tau}} \cdot \mathbf{v}=\mathbf{u}+\tilde{\mathbf{B}} \cdot \operatorname{bin}(\mathbf{c})$. The signature is $(\boldsymbol{\tau}, \mathbf{v}, \mathbf{r})$.

$\operatorname{Verify}\left(p k=\left(\mathbf{B},\left\{\mathbf{B}_{i}\right\}_{i \in\left[0, m_{3}\right]}, \mathbf{u}, \tilde{\mathbf{B}}, \tilde{\mathbf{B}}_{0}, \tilde{\mathbf{B}}_{1}\right)\right) \rightarrow\{0,1\}$

On input the public key $\left(\mathbf{B},\left\{\mathbf{B}_{i}\right\}_{i \in\left[0, m_{3}\right]}, \mathbf{u}, \tilde{\mathbf{B}}, \tilde{\mathbf{B}}_{0}, \tilde{\mathbf{B}}_{1}\right)$, a message \mathbf{m} and a signature $(\boldsymbol{\tau}, \mathbf{v}, \mathbf{r}) \in\{0,1\}^{m_{3}} \times \mathbb{Z}^{2 m_{2}} \times \mathbb{Z}^{2 m_{2}}$, the verification algorithm first computes $\mathbf{B}_{\tau}=\left(\mathbf{B} \| \mathbf{B}_{0}+\sum_{i=1}^{m_{3}}\left(\tau[i] \cdot \mathbf{B}_{i}\right)\right)$. Then it checks if $\mathbf{B}_{\boldsymbol{\tau}} \cdot \mathbf{v}=\mathbf{u}+\tilde{\mathbf{B}} \cdot \operatorname{bin}\left(\tilde{\mathbf{B}}_{0} \cdot r+\mathbf{B}_{1} \cdot \mathbf{m}\right)$ and \mathbf{v}, \mathbf{r} are short vectors.

