Post-quantum Cryptography

(September 2022)

Dr. Ratna Dutta Associate Professor, IIT Kharagpur

Department of Mathematics IIT Kharagpur

Why Post Quantum Crypto?

- Quantum computers will break the most popular public-key cryptosystems:
 - RSA.
 - DSA
 - ► FCDSA
 - ► ECC.
 - ► HECC, · · ·

can be attacked in polynomial time using Shor's algorithm.

Post Quantum Crypto brings solution to this threat.

Post Quantum Crypto

Post-quantum cryptography deals with cryptosystems that

- run on conventional computers
- are secure against attacks by quantum computers.

Examples:

- Hash-based cryptography.
- Code-based cryptography.
- Lattice-based cryptography.
- Multivariate-quadratic-equations cryptography.
- Isogeny-based cryptography.

Lattice-based hash function with two inputs

Let n,q,k,m positive integers where: n is the security parameter; q=O(n); $k=\lfloor \log q \rfloor$, m=2nk and $\mathbb{Z}_q=\{0,\ldots,q-1\}$. The "powers-of-2" matrix is defined by

$$G = \begin{bmatrix} 1 & 2 & 4 & \dots & 2^{k-1} \\ & & & 1 & 2 & 4 & \dots & 2^{k-1} \\ & & & & & & \dots & \\ & & & & & & 1 & 2 & 4 & \dots & 2^{k-1} \end{bmatrix}$$

A Family of Lattice-Based Collision-Resistant Hash Function

The function family \mathcal{H} mapping from $\{0,1\}^{nk} \times \{0,1\}^{nk}$ to $\{0,1\}^{nk}$ is defined as $\mathcal{H}=\{h_A|A\in\mathbb{Z}_q^{n\times m}\}$, where for $A=[A_0|A_1]$ with $A_0,A_1\in\mathbb{Z}_q^{n\times nk}$, and for any $(\mathbf{u}_0,\mathbf{u}_1)\in\{0,1\}^{nk}\times\{0,1\}^{nk}$, we have

$$h_A(\mathbf{u}_0,\mathbf{u}_1) = bin(A_0 \cdot \mathbf{u}_0 + A_1 \cdot \mathbf{u}_1 \pmod{q})$$

Note that, $h_A(\mathbf{u}_0, \mathbf{u}_1) = \mathbf{u} \iff A_0 \cdot \mathbf{u}_0 + A_1 \cdot \mathbf{u}_1 = G \cdot \mathbf{u} \pmod{\mathsf{q}}$

Lattice-based Hardness Assumption

Short integer solution(SIS) problem

The $SIS_{n,m,q,\beta}^{\infty}$ problem is as follows: Given uniformly random matrix $A \in \mathbb{Z}_q^{n \times m}$, find a non-zero vector $x \in \mathbb{Z}^m$ such that $||x||_{\infty} \leq \beta$ and $A \cdot x = 0$ (mod q).

dRLWE problem

Let $q,m,n,\sigma>0$ depend on security parameter (q,m,n) are integers). The decision-RLWE problem $(dRLWE_{q,n,m,\sigma})$ is to distinguish between: $(a_i,a_i\cdot s+e_i)_{i\in[m]}\in (R_q)^2$ and $(a_i,u_i)_{i\in[m]}\in (R_q)^2$ for $a_i,u_i\leftarrow R_q$ and $s,e_i\leftarrow R(\chi_\sigma)$.

Merkle-Tree Accumulator

$\mathsf{Acc}.\mathsf{Setup}(\lambda) \longrightarrow \mathsf{param}_{\mathsf{Acc}}$

Sample $A \overset{\$}{\longleftarrow} \mathbb{Z}_q^{n \times m}$ and set $\operatorname{param}_{\operatorname{Acc}} = A$. All the following algorithm takes input $\operatorname{param}_{\operatorname{Acc}}$ implicitly.

$\mathsf{Acc}.\mathsf{Accumulate}(\mathcal{R} = \{ \mathbf{d}_0 \in \{0,1\}^{nk}, \dots, \mathbf{d}_{N-1} \in \{0,1\}^{nk} \}) \to \mathbf{u}$

- (i) For $j=1,2,\ldots,N-1$, represent $\mathbf{d}_j \in \{0,1\}^n$ as $\mathbf{u}_{j_1,j_2,\ldots,j_l}$ for the binary representation $(j_1,j_2,\ldots,j_l) \in \{0,1\}^l$ of j where $l=\lceil \log N \rceil$.
- (ii) Build a binary tree with $N=2^l$ leaves $\mathbf{u}_{0,0,\dots,0},$..., $\mathbf{u}_{1,1,\dots,1}$ and compute the accumulated value

$$\mathbf{u}_{a_1,a_2,...,a_i} = h_A(\mathbf{u}_{a_1,a_2,...,a_i,0},\mathbf{u}_{a_1,a_2,...,a_i,1})$$

for the nodes with values $\mathbf{u}_{a_1,a_2,...,a_i,0}, \mathbf{u}_{a_1,a_2,...,a_i,1} \in \{0,1\}^n$ and for all $(a_1,a_2...,a_i) \in \{0,1\}^i$ at depth i=1,2,...,l-1.

(iii) At depth 0, compute the accumulated value $\mathbf{u} = h_A(\mathbf{u}_0, \mathbf{u}_1)$ at root for the node values at $\mathbf{u}_0, \mathbf{u}_1 \in \{0, 1\}^n$.

Merkle-Tree Accumulator: Acc. Accumulate

Merkle-Tree Accumulator

$Acc.WitGen(param_{Acc}, \mathcal{R}, \mathbf{d}) \longrightarrow wit$

- (i) If $\mathbf{d} \notin \mathcal{R}$, output \perp .
- (ii) If $\mathbf{d} \in \mathcal{R}$, then $\mathbf{d}_i = \mathbf{d}$ for some j.
- (iii) Represent \mathbf{d}_j as $\mathbf{u}_{j_1,j_2,\ldots,j_l}$ where (j_1,j_2,\ldots,j_l) is the binary representation of j.
- (iv) Set the witness

wit =
$$((j_1, j_2, ..., j_l), (\mathbf{w}_l, \mathbf{w}_{l-1}, ..., \mathbf{w}_1)) \in \{0, 1\}^l \times (\{0, 1\}^n)^l$$

Merkle-Tree Accumulator: Acc.WitGen

Merkle-Tree Accumulator

Acc. Verify
$$(\mathbf{u}, \mathbf{d}, \text{wit} = ((j_1, j_2, \dots, j_l), (\mathbf{w}_l, \mathbf{w}_{l-1}, \dots, \mathbf{w}_1))) \longrightarrow 0/1$$

Find the values $\mathbf{v}_l, \mathbf{v}_{l-1}, \mathbf{v}_0$ by setting $\mathbf{v}_l = \mathbf{d}$ and computing

$$\mathbf{v}_{i} = \begin{cases} h_{A}(\mathbf{v}_{i+1}, \mathbf{w}_{i+1}) & \text{if } j_{i+1} = 0 \\ h_{A}(\mathbf{w}_{i+1}, \mathbf{v}_{i+1}) & \text{if } j_{i+1} = 1 \end{cases}$$

for $i = l - 1, \dots, 1, 0$.

If $\mathbf{v}_0 = \mathbf{u}$, output 1, otherwise return 0.

Lemma

The given accumulator scheme is secure assuming the hardness of the $SIS_{n,m,q,\beta}^{\infty}$ problem.

Merkle-Tree Accumulator: Acc. Verify

Pseudo-random Function (PRF)

Setup $(\lambda) \longrightarrow (\mathbf{b}_0, \mathbf{b}_1)$

Let $R = \frac{\mathbb{Z}[X]}{\langle X^n + 1 \rangle}$ and $R_q := R/qR$ and $I = \lceil \log_2 q \rceil$. Fix some $\mathbf{b}_0, \mathbf{b}_1 \in R_q^{1 \times I}$. Ten set $params = (\mathbf{b}_0, \mathbf{b}_1)$. All the following algorithm takes params implicitly.

$\mathsf{KeyGen}(\lambda) \longrightarrow k$

The key generation algorithm samples k from $R_q(\chi_\sigma)$, where χ_σ discrete Gaussian distribution over R_q with parameter σ .

Evaluation $(\mathbf{x}) \longrightarrow F_k(\mathbf{x})$

For input $\mathbf{x} = (x_1, \dots, x_L) \in \{0, 1\}^L$. Define

$$\mathbf{b}_{\mathbf{x}} := \mathbf{b}_{x_1}.G^{-1}(\mathbf{b}_{x_2}.G^{-1}(\mathbf{b}_{x_3}.G^{-1}\dots(\mathbf{b}_{x_{L-1}}.G^{-1}(b_{x_L})))) \in R_q^{1 \times l}$$

PRF is defined as

$$F_k(\mathbf{x}) = [\mathbf{b}_{\mathbf{x}} \cdot k]_p = [\frac{p}{q} \cdot \mathbf{b}_{\mathbf{x}} \cdot k]$$

where p|q.

Pseudo-random Function (PRF)

Theorem

Sample $k \leftarrow R(\chi_{\sigma})$. If $q >> p \cdot \sigma \cdot \sqrt{L} \cdot n \cdot l$, then the function $F_k(\mathbf{x}) = \lceil \mathbf{b}_{\mathbf{x}} \cdot k \rfloor_p$ is a PRF under the $dRLWE_{a,n,\sigma}$ assumption.

Signature Scheme by B. Libert et. al

Let λ be the security parameter. Let $m_1, m_2, m_3, \sigma, q, L$ be positive integers that are polynomial in λ . Let $k = \lfloor \log q \rfloor$. The signature scheme works as follows:

$$\mathsf{KeyGen}(\lambda) \to (\mathit{sk} = \mathsf{T}, \, \mathit{pk} = (\mathsf{B}, \{\mathsf{B}_i\}_{i \in [0, m_3]}, \mathsf{u}, \tilde{\mathsf{B}}, \tilde{\mathsf{B}}_0, \tilde{\mathsf{B}}_1))$$

On input the security parameter λ , the key generation algorithm first samples a random matrix $\mathbf{B} \xleftarrow{\$} \mathbb{Z}_q^{m_1 \times m_2}$ together with its trapdoor \mathbf{T} . Then it samples

$$\mathbf{B}_i \xleftarrow{\$} \mathbb{Z}_q^{m_1 \times m_2} \text{ for } i \in [0, m_3] \text{ and samples } \tilde{\mathbf{B}} \xleftarrow{\$} \mathbb{Z}_q^{m_1 \times m_2}, \ \tilde{\mathbf{B}}_0 \xleftarrow{\$} \mathbb{Z}_q^{m_1 \times 2m_2},$$

$$\tilde{\mathbf{B}}_1 \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{m_1 \times L}$$
 and $\mathbf{u} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{m_1}$. Finally, it outputs $sk = \mathbf{T}$ and $pk = (\mathbf{B}, \{\mathbf{B}_i\}_{i \in [0, m_2]}, \mathbf{u}, \tilde{\mathbf{B}}, \tilde{\mathbf{B}}_0, \tilde{\mathbf{B}}_1)$.

Signature Scheme by B. Libert et. al

Sign
$$(sk = T) \rightarrow (\tau, v, r)$$

On input the secret key \mathbf{T} and a message $\mathbf{m} \in \{0,1\}^L$, the sign algorithm first samples $\boldsymbol{\tau} \overset{\$}{\leftarrow} \{0,1\}^{m_3}$. Then it computes the matrix

 $\begin{array}{l} \mathbf{B}_{\boldsymbol{\tau}} = (\mathbf{B}||\mathbf{B}_0 + \Sigma_{i=1}^{m_3}(\boldsymbol{\tau}[i] \cdot \mathbf{B}_i)). \text{ Next, it samples } \mathbf{r} \xleftarrow{\$} D_{\sigma}^{2m_2} \text{ and computes} \\ \mathbf{c} = \tilde{\mathbf{B}}_0 \cdot \mathbf{r} + \tilde{\mathbf{B}}_1 \cdot \mathbf{m}. \text{ Then it uses the secret key } \mathbf{T} \text{ to samples a vector } \mathbf{v} \in D_{\sigma}^{2m_2} \\ \text{that satisfies } \mathbf{B}_{\boldsymbol{\tau}} \cdot \mathbf{v} = \mathbf{u} + \tilde{\mathbf{B}} \cdot \mathrm{bin}(\mathbf{c}). \text{ The signature is } (\boldsymbol{\tau}, \mathbf{v}, \mathbf{r}). \end{array}$

Verify
$$(pk = (B, \{B_i\}_{i \in [0, m_3]}, \mathbf{u}, \tilde{B}, \tilde{B}_0, \tilde{B}_1)) \to \{0, 1\}$$

On input the public key $(\mathbf{B}, \{\mathbf{B}_i\}_{i \in [0,m_3]}, \mathbf{u}, \tilde{\mathbf{B}}, \tilde{\mathbf{B}}_0, \tilde{\mathbf{B}}_1)$, a message \mathbf{m} and a signature $(\boldsymbol{\tau}, \mathbf{v}, \mathbf{r}) \in \{0, 1\}^{m_3} \times \mathbb{Z}^{2m_2} \times \mathbb{Z}^{2m_2}$, the verification algorithm first computes $\mathbf{B}_{\boldsymbol{\tau}} = (\mathbf{B}||\mathbf{B}_0 + \Sigma_{i=1}^{m_3}(\boldsymbol{\tau}[i] \cdot \mathbf{B}_i))$. Then it checks if $\mathbf{B}_{\boldsymbol{\tau}} \cdot \mathbf{v} = \mathbf{u} + \tilde{\mathbf{B}} \cdot \text{bin}(\tilde{\mathbf{B}}_0 \cdot \mathbf{r} + \tilde{\mathbf{B}}_1 \cdot \mathbf{m})$ and \mathbf{v}, \mathbf{r} are short vectors.

