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[1] Drought triggers are patterns in hydroclimatic variables that herald upcoming droughts
and form the basis for mitigation plans. This study develops a new method for identification
of triggers for hydrologic droughts by examining the association between the various
hydroclimatic variables and streamflows. Since numerous variables influence streamflows to
varying degrees, principal component analysis (PCA) is utilized for dimensionality
reduction in predictor hydroclimatic variables. The joint dependence between the first two
principal components, that explain over 98% of the variability in the predictor set, and
streamflows is computed by a scale-free measure of association using asymmetric
Archimedean copulas over two study watersheds in Indiana, USA, with unregulated
streamflows. The M6 copula model is found to be suitable for the data and is utilized to find
expected values and ranges of predictor hydroclimatic variables for different streamflow
quantiles. This information is utilized to develop drought triggers for 1 month lead time
over the study areas. For the two study watersheds, soil moisture, precipitation, and runoff
are found to provide the fidelity to resolve amongst different drought classes. Combining
the strengths of PCA for dimensionality reduction and copulas for building joint
dependence allows the development of hydrologic drought triggers in an efficient manner.
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1. Introduction

[2] Drought, as a prolonged status of water deficit, is
perceived as one of the most expensive and the least under-
stood natural disasters. In monetary terms alone, a typical
drought costs American farmers and businesses $6–8 bil-
lion dollars each year, more than damages incurred from
floods and hurricanes [Federal Emergency Management
Agency, 1995]. The consequences tend to be more severe in
areas, where agriculture is a major economic driver. Dra-
cup et al. [1980] stated that proper definition of drought
depends on the nature of water deficit relevant to the study
area. As water moves through the hydrologic cycle, precip-
itation deficits (meteorological droughts) lead to low soil
moisture levels (agricultural droughts) that translate into
low streamflows, reservoir, and/or groundwater levels
(hydrologic droughts).

[3] The occurrence and magnitude of hydrologic droughts
are heralded by triggers that may be manifested in specific
patterns of hydroclimatic variables. Identification of these
triggers at appropriate lead times is necessary for devising
effective drought mitigation plans. Estimating water deficits

and drought categories at weekly, monthly, seasonal, and an-
nual lead times are needed for scheduling irrigation events
and managing water resources of a region. Drought charac-
terization is currently accomplished by indices such as stand-
ardized precipitation index (SPI), palmer drought severity
index, crop moisture index, surface water supply index, and
reclamation drought index (http://drought.unl.edu/Planning/
Monitoring/ ComparisonofIndicesIntro.aspx). Drought indi-
ces are typically designed for assessing current conditions
and have little predictive capability. Large-scale oceanic and
atmospheric indicators such as the El Ni~no-Southern
oscillation phases, North Atlantic oscillations, Pacific North
American index, Atlantic multidecadal oscillations, and Pa-
cific decadal oscillations are used as long-term precursors to
annual/seasonal forecasts of precipitation [Ropelewski and
Halpert, 1996; McHugh and Rogers, 2001; Maity and
Nagesh Kumar, 2008a]. However, for many parts of the
world, including Indiana, USA, these indicators have been
found to have little to no influence [Charusombat and
Niyogi, 2011]. Further, their incapability to provide short-
term predictions (several weeks, to 6 month range) render
them unsuitable as drought triggers for such time scales. We
hypothesize that hydrological droughts, reflected in unregu-
lated streamflows, would have precursors in local hydrome-
teorologic variables related to rainfall and soil moisture over
the corresponding watersheds. McKay et al. [1989] sug-
gested that accurate drought predictions will need models
that link between climate and weather factors to streamflows
and river stage data.

[4] Several considerations come into play for the devel-
opment of drought triggers including drought types, data
availability, choice of hydrologic variables (precipitation,
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temperature, streamflows, storage levels, etc.), temporal
scales, and validity of the trigger. Over the past two deca-
des, drought triggers have been developed by several states
and utilities [Steinemann, 2003]. However, these have met
with limited success because of (i) anomalies between
results from different drought indicators and (ii) lack of a
strong record length for proper model development and
validation exercises. Moreover, these triggers are often
defined as some preset thresholds to be crossed by various
drought indices at the same instance of time for which
drought status is being analyzed. Thus, they may not recog-
nize early warning signals that may be present in the
record.

[5] Though droughts are fundamentally triggered by
insufficient precipitation, the evolution of water deficits
from precipitation to soil moisture and to streamflows is
not instantaneous and is controlled by complex physical
mechanisms. As hydrologic droughts are based on abnor-
mally low flows, estimation of streamflows is, therefore, a
necessary prerequisite to drought analysis. Since a drought
trigger governs the level of future response, it is important
that the trigger be based on methods that convey predictive
uncertainty. There are many methods available for estima-
tion of streamflows, classified mainly into physics-based,
conceptual, and data-driven approaches. Several watershed
models have been developed that rely upon the physical
knowledge of the watershed and the hydrological cycle,
often resulting in complex representations that require in-
tensive computer effort for model calibration and corrobo-
ration. Data-driven techniques do not require detailed
understanding of the inherent physical mechanisms, but
have shown comparable accuracy for streamflow predic-
tion as physics-based models [Wu et al., 2009]. The time
scale of 1 month lead forecasts is particularly challenging
because physics-based models (HEC-HMS, MIKE-SHE,
etc.) are not able to project using input data beyond sev-
eral hours to days without a disaggregation procedure.
Process-based models such as SWAT perform simulations
at a daily time step [Srinivasan and Arnold, 1994], and
model outputs have to be aggregated to obtain monthly
values. However, the strength of such models lies in
examining long-term consequences of management prac-
tices rather than monthly forecasts. There are many con-
ceptual lumped-parameter models developed in the last
four decades, mainly for flood forecasting, with one day
or shorter time resolutions [Xu and Singh, 2004], but their
predictive capabilities are very limited if the time horizon
exceeds several days.

[6] Statistical approaches have been utilized to model
the complex relationships between streamflows and the
large-scale atmospheric circulation phenomena [Anmala et
al., 2000; Maity and Nagesh Kumar, 2008b]. The predic-
tors used in majority of these data-driven approaches were
hydroclimatic variables such as mean temperature, mean
sea-level pressure, soil moisture, precipitation, runoff, and
wind speed. While these studies have stressed the impor-
tance of hydroclimatic variables for enhancing streamflow
prediction, they were primarily targeted toward long-range
forecasting [Salas et al., 2011]. Even with the predictor set
identified, new approaches are needed for achieving short-
term (few weeks to months) forecasts. The use of advanced
statistical models based on Markov properties [e.g., Mallya

et al., 2013] have helped in probabilistic classification of
drought states and alleviated the need for user-specified
thresholds for drought categorization. Thus, though robust
models exist for forecasting streamflows and upcoming
hydrologic droughts, these models are not suitable for de-
velopment of triggers that require identification of the
ranges of predictor variables that herald a particular
drought.

[7] The joint probability density function between
streamflows and hydroclimatic predictor variables is
needed to identify and develop drought triggers. Copulas
are a natural choice for this task [Nelsen, 2006]. They allow
the dependence structure to be modeled without any restric-
tion on the distributions of the marginals [Genest and
Favre, 2007] and have been gaining popularity with hydro-
logic applications. Favre et al. [2004] used Frank and Clay-
ton 2-copulas to model the dependence between
streamflow peaks and volumes. Salvadori and De Michele
[2004] adopted copulas in their study of the return period
of hydrological events. Zhang and Singh [2006] used copu-
las to determine bivariate distributions between flood
peaks, volumes and durations, and employed them to define
joint and conditional return periods needed for hydrologic
design calculations. The joint distribution of intensity, du-
ration, and severity of droughts was modeled using copulas
by Shiau et al. [2007], Wong et al. [2010], and Madadgar
and Moradkhani [2013]. Maity and Nagesh Kumar [2008a]
analyzed the dependencies among the teleconnected hydro-
climatic variables using copulas for the prediction of
response variables using large-scale oceanic and atmos-
pheric indicators. Kao and Govindaraju [2010a] utilized
copulas to construct an intervariable drought index, where
the dependence structure of precipitation and streamflow
marginals was preserved. The review by Mishra and Singh
[2010] highlights the expanding role of copulas in drought
assessment studies.

[8] Given the large number of potential hydroclimatic
variables in the predictor set, the direct use of copulas to
model their joint dependence with streamflows is imprac-
tical because of the mathematical complexity in con-
structing higher-dimensional copulas. If the dependence
between all the interacting variables cannot be repre-
sented by multivariate Gaussian (or meta-elliptical) copu-
las, then models at even the trivariate level can be very
challenging [Kao and Govindaraju, 2008, 2010b]. More-
over, with multiple interacting variables, the curse of
dimensionality adds further challenges to estimation of
model parameters from limited record lengths. While
many options exist for modeling bivariate dependence
between variables, models for higher dimensions are not
easily available.

[9] Principal component analysis (PCA) provides an ele-
gant way of projecting the precursor hydroclimatic varia-
bles onto a feature space, and representing the original data
through a reduced number of effective features called prin-
cipal components (PCs) [Jolliffe, 1986; Preisendorfer,
1988]. If the first few (two in this case) features are able to
explain most of the variability (>90%) in the original data
set, then substantial dimensionality reduction may be
achieved through unsupervised learning. PCA is recognized
as the most widely used tool for dimensionality reduction
for multivariate data problems. Lins [1985] utilized PCA to
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construct parsimonious models for multisite streamflows.
Maurer et al. [2004] showed the effectiveness of PCA for
both reducing the dimensionality of large data sets and bet-
ter graphical representation of the modes of variability in
streamflows. Tripathi and Govindaraju [2008] developed
algorithms for data compression using PCA for data sets
with noise. PCA was adopted by Keyantash and Dracup
[2004] to achieve dimensionality reduction for developing
an aggregate drought index.

[10] The goal of this paper is two-fold. The first goal is
to model the joint distribution of streamflows and the im-
portant principal components of precursor hydroclimate
variables using an appropriate copula family for two study
watersheds in Indiana, USA. This copula model is tested
for its capability to forecast low streamflows that are of
concern for hydrologic droughts. The second goal is to uti-
lize the PCA-copula framework to develop drought trigger
information. While copulas and PCA have been widely
used individually, to the best of our knowledge, no prior
studies exist for identifying drought triggers in this fashion.
The details of study watersheds are provided in section 2.
The methodology adopted in the study with details of prin-
cipal components analysis, copula models, and drought
trigger analysis are explained in section 3. These are fol-
lowed by results and discussion in section 4, and the sum-
mary and conclusions of the study in section 5.

2. Study Area and Data Used

2.1. Study Area

[11] The study was carried out over two watersheds in
the state of Indiana, USA. Both the watersheds form a part
of the Ohio River Basin. The first watershed (WS I) extend-
ing from 38�340N to 39�490N and 85�240W to 86�310W
spreads over 6259 square kilometers. The second watershed
(WS II) lies between 40�470N to 41�240N and 85�080W to
86�200W and extends over an area of 1657 square kilo-
meters. The two watersheds are shown in Figure 1. The
land use in these watersheds consists of mainly agricultural
and forest lands, followed by public and urban built-up
lands. Agriculture being the major economic activity preva-
lent in WS I and WS II, high irrigation water demands exist
during the growing season. The choice of the watersheds
was governed by the need to conduct drought analyses for
locations, where streamflows were not influenced by human
activities.

2.2. Data Used

[12] The 30 m resolution DEMs obtained from USGS
National Elevation Data set was used to delineate the
watersheds. Though the choice of coarser resolution affects
the identification of drainage features in low relief land-
scapes, there is substantial reduction in computational
efforts involved in the processing of the 30 m digital eleva-
tion model (DEM) over a high-resolution DEM. Modeling
the dependencies and analysis of drought triggers require a
long record of historic observations. Therefore, monthly
data with a minimum record length of 50 years were
adopted in the present study. The various hydroclimatic
variables used in the study are listed in Table 1. The 0.5� �
0.5� climate prediction center (CPC) global monthly data
sets [Huang et al., 1996; Fan and van den Dool, 2004],

available from 1948 onwards, were used. The land model
was treated as a one-layer ‘‘bucket’’ water balance model,
when generating the CPC data sets. The data used in our
study include modeled monthly soil moisture values, mod-
eled monthly runoff values, observed monthly precipitation
values, observed monthly temperature values, and modeled
monthly evaporation values. The location of CPC stations
is marked by circles in Figure 1. Given the small watershed
sizes determined by the need for unregulated streamflows,
the number of CPC grid points directly over the study areas
is quite small. The variables : Sea-level pressure, u-wind,
and v-wind were obtained from the NCEP/NCAR
Reanalysis-1 project data, at a spatial resolution of 2.5� �
2.5� [Kalnay et al., 1996]. The resultant of the u-wind and
v-wind components was adopted as the wind speed variable
in the present study. Given the monthly time scale chosen
for this study, the time of concentration for these water-
sheds is in the order of days. Thus, variables were multi-
plied by the Thiessen weights at different grid points to
obtain their spatially averaged values over the study water-
sheds. The US Geological Survey (USGS) monthly stream-
flow data from 1958 to 2010 recorded at the USGS
03371500 (East Fork White River near Bedford, Indiana)
were used for WS I, while the data at USGS streamflow
gage 03328500 (Eel River near Logansport, Indiana) from
1948 to 2010 were used for WS II.

3. Methodology

3.1. Dimensionality Reduction Using Principal
Components Analysis

[13] The formulation of a dependence model between
the seven predictor variables in Table 1 and streamflows is
impractical even when using copulas. PCA was performed
to transform the set of correlated n-dimensional (n¼ 7
here) predictor set into another set of n-dimensional uncor-
related vectors (called principal components). The PCs are
arranged in order of their ability to explain the variability
in the data. The conventional or standard PCA, which is
formulated as an eigenvalue problem, was used for unsu-
pervised dimensionality reduction [Jolliffe, 1986]. Prior to
extracting the principal components, the mean value was
subtracted from each of the predictors to obtain a series of
predictor anomalies. The covariance matrix was obtained
for the anomaly data sets, and the eigenvalues and eigen-
vectors of this covariance matrix were computed. The
degree of dimensionality reduction achieved in the predic-
tor set was determined by variance explained by the first
two principal components.

3.2. Asymmetric Archimedean Class of Copulas

[14] A copula is a function that models the dependence
between multiple random variables, regardless of their mar-
ginals. A d-dimensional copula is a multivariate cumulative
density function (CDF) C defined in the unit d-dimensional
space 0; 1½ �dwith uniform margins 0; 1½ �and with the
following properties: (i) 8u 2 0; 1½ �d ;C uð Þ ¼ 0 if at least
one coordinate of u is equal to 0, and C uð Þ ¼ uk if all the
coordinates of u are equal to 1 except uk; (ii) 8a and b 2
0; 1½ �d such that a � b;Vc a; b½ �ð Þ � 0; where V is the C-vol-

ume [Nelsen, 2006]. The copula approach to dependence
modeling has its roots in the theorem by Sklar [1959],
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according to which a d-dimensional CDF with univariate
margins F1;F2; :::;Fd is defined by:

H x1; x2; ::; xdð Þ ¼ C F1 x1ð Þ;F2 x2ð Þ; :::;Fd xdð Þð Þ ¼ C u1; u2; :::; udð Þ
ð1Þ

where Fk xkð Þ ¼ uk for k ¼ 1; 2; :::; d with Uk 2 U 0; 1ð Þ if
Fk is continuous.

[15] Archimedean copulas are very popular, with both
symmetric and asymmetric forms available in the literature
[Joe, 1997; Nelsen, 2006]. They possess closed form
expressions and allow modeling of a variety of different
dependence structures. An Archimedean symmetric d-cop-
ula is of the form:

C uð Þ ¼ ’�1
Xd

k¼1

’k ukð Þ
 !

ð2Þ

where the function ’ (called the generator of the copula) is a
continuous strictly decreasing function from 0; 1½ � to 0;1½ Þ,
such that ’ 0ð Þ ¼ 1 and ’ 1ð Þ ¼ 0, and its inverse ’�1 is
completely monotone on 0;1½ Þ, that is, ’�1 has derivatives
of all orders which alternate in sign [Nelsen, 2006]:

�1ð Þk � d
k’�1 tð Þ

dtk
� 0 ð3Þ

for all t in 0;1½ Þ and k ¼ 1; 2; :::; d:
[16] In equation (2), if a certain uk is assigned the value

1, then the joint distribution of u1; u2; :::; ud jukð Þ is
obtained. Since ’ ukð Þ ¼ 0 when k¼ 1, the (d� 1)-dimen-
sional marginal of the symmetric Archimedean copula is
also an Archimedean copula. The expressions for these
(d� 1)-dimensional copulas are identical regardless of the
choice of k. As a result, only one Archimedean 2-copula is
required to model all mutual dependencies among the

Figure 1. Map of the study watersheds WS I and WS II.
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variables. This exchangeability property that can be mod-
eled by symmetric copulas limits the nature of the depend-
ence structures. Since the study took into account correlated
variables such as streamflows and principal components that
possess different bivariate dependence structures, a more
general multivariate extension of the Archimedean 2-
copula, namely the fully nested or asymmetric copula as
described in Whelan [2004], was adopted here. This copula
is given by d� 1 distinct generating functions as:

C u1; u2; :::; udð Þ ¼ C1 ud ;C2 ud�1; :::;Cd�1 u2; u1ð Þ:::ð Þð Þ ð4Þ

[17] For example, in a fully nested 3-copula, two varia-
bles u1 and u2 are coupled using copula C2 and the copula
of u1 and u2, is coupled with u3 by copula C1. In general,
there are d d � 1ð Þ=2 ways of coupling d variables. When
the bivariate joint probability of two variables conditioned
on the third variable is computed, different dependence
structures are obtained based on the conditioning variable.
Grimaldi and Serinaldi [2006] used asymmetric Archime-
dean copulas to model trivariate joint distribution of flood
peaks, volumes, and durations. A nested 3-copula was
adopted in the present study to model the dependence
between the monthly streamflow anomaly and the first two
principal components of a set of predictor variables. There
are two parameters for the nested 3-copula model: �1 and
�2 such that �1� �2 implying a higher degree of depend-
ence for the inner nested variables. It has been found that
only two dependence structures can be reproduced for three
possible pairs [Grimaldi and Serinaldi, 2006]. When two
variables u1 and u2 are likely correlated with the third one
u3, and the degree of dependence between u1, u2 is stronger
than that of either u1 and u2 with u3, the asymmetric three-

dimensional model may be applied. The dependence
between the variables is expressed in terms of the Kendall’s
correlation coefficient,� . Kendall’s � for a random vector
(X, Y)T is simply the probability of concordance minus the
probability of discordance [Embrechts et al., 2003]:

�XY ¼ Prob X � ~X
� �

Y � ~Y
� �

> 0
� �

� Prob X � ~X
� �

Y � ~Y
� �

< 0
� �

ð5Þ

[18] The various asymmetric Archimedean copula fami-
lies selected for the study, their permissible � values, and
dependence ranges are listed in Table 2.

3.3. Parameter Estimation

[19] Several copula parameter estimation methods are
available in the literature namely, the method of moments, ca-
nonical maximum likelihood (CML) method, and inference
from margins method. When one-parameter bivariate copulas
are adopted, the popular approach is the simple method of
moments based on inversion of Spearman’s or Kendall’s rank
correlation [Genest and Favre, 2007]. In the multivariate-
multiparameter case, this method becomes less elegant and
may lead to inconsistencies. In such instances, a more natural
estimation technique is the CML method [Genest et al., 1995;
Kojadinovic and Yan, 2011]. The parameters of the five nested
3-copula families used in this study were estimated using the
CML method. This method performs a nonparametric estima-
tion of the marginals by using the respective scaled ranks. The
dependence parameters �1 and �2 are obtained by maximizing
the log-likelihood function l(�) given by:

l �ð Þ ¼
Xn

i¼1

log c� F̂ 1 xi1ð Þ; F̂ 2 xi2ð Þ; . . . ; F̂ d xidð Þ
� �� �

ð6Þ

where c� denotes the density of the copula C�, and
F̂ k xikð Þ(also denoted as uk) is the rank-based nonparametric
marginal probability of kth variable given by:

F̂ k xikð Þ ¼
1

nþ 1

Xn

i¼1

I Xik � xikð Þ k ¼ 1; 2; :::; d ð7Þ

where I(	) is indicator function returning 1 if the argument
is true and 0 otherwise.

Table 2. Asymmetric Archimedean Copula Families Used in the Study

Family Nested Copula C�1 ðu3;C�2 ðu1; u2ÞÞ �2 � �1 2 �12; �23; �13 2 Reference

M3 ��1
�1 log 1� ð1� e��1 Þ�1�1� �1� ð1� e��2 Þ�1

n
ð1� e��2u1 ÞÞð1� e��2u2 Þ

�ð�1=�2Þ�ð1� e��1u3 Þ
o [0,1) [0,1] Joe [1997]

M4 �
ðu1
��2 þ u2

��2 � 1Þð�1=�2Þ þ u3
��1 � 1

�ð�1=�1Þ [0,1) [0,1] Joe [1997]

M5
1�

h
ð1� u1Þ�2 ð1� ð1� u2Þ�2 Þ þ ð1� u2Þ�2

n oð�1=�2Þ

ð1� ð1� u3Þ�1 Þ þ ð1� u3Þ�1

ið1=�1Þ

[1,1) [0,1] Joe [1997]

M6 e �ð½ð�log u1Þ�2þð�log u2Þ�2 �ð�1=�2 Þþð�log u3Þ�1 Þð1=�1 Þf g [1,1) [0,1] Joe [1997] and
Embrechts et al. [2003]

M12
ðu1
�1 � 1Þ�2 þ ðu2

�1 � 1Þ�2

h ið�1=�2Þ
þ ðu3

�1 � 1Þ�1

� 	ð1=�1Þ
þ 1

( )�1 [1,1) [0.333,1] Embrechts et al. [2003]

Table 1. List of Variables Used in the Study

Sl. No. Variable Unit Period of Data

1 Soil moisture mm 1948–2010
2 Runoff mm 1948–2010
3 Temperature �C 1948–2010
4 Precipitation mm 1948–2010
5 Evaporation mm 1948–2010
6 Sea-level pressure mbar 1948–2010
7 Wind speed m/s 1948–2010
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3.4. Goodness-of-Fit Tests for Asymmetric Copulas

[20] When there exist more than one feasible copula
families that satisfy the dependence range for the given
data, the final selection of a suitable copula is based on the
best fit to observations. This fit can be assessed graphically
by comparing the scatter plots of observed and simulated
data in the case of bivariate distributions, but becomes dif-
ficult for higher dimensions. Goodness-of-fit tests examine
the null hypothesis H0 : C 2 C0 for a copula class C0

against H1 : C 62 C0. These tests compare the distance
between the empirical distribution of copula, Cn and an
estimation of C�n of C obtained under H0 [Genest et al.,
2009]. Formally, the goodness-of-fit tests are based on the
statistic :

X ¼
ffiffiffi
n
p

Cn uð Þ � C�n uð Þf g u 2 0; 1½ �d ð8Þ

where the empirical copula of the data X1;X2; :::;Xd is
defined by Deheuvels [1981] as:

Cn uð Þ ¼ 1

n

Xn

i¼1

I Ui � uð Þ;u 2 0; 1½ �d ð9Þ

[21] In this study, the rank-based versions of Crame�r-von
Mises and Kolmogorov-Smirnov statistics were used for
testing the goodness-of-fit of the nested copulas. The
Crame�r-von Mises statistic Sn has been a popular goodness-
of-fit test procedure for copula models [Genest et al.,
2009]. The statistic Sn was determined using equation (10),
substituting the value of C� evaluated from the copula
expression.

Sn ¼
Xn

i¼1

Cn Û i

� �
� C�n Û i

� �� �2 ð10Þ

where Cn is the empirical copula computed as per equation
(9).

[22] The Kolmogorov-Smirnov statistic Tn utilizes the
absolute maximum distance between the empirical copula
probability distribution and that simulated using the esti-
mated parameters to measure the fit of the copulas as
shown below [Genest et al., 2009].

Tn ¼ max u2 0;1½ �d j
ffiffiffi
n
p

Cn uð Þ � C�n uð Þf gj ð11Þ

[23] Additionally, the probability plots of the empirical
distribution and the nested copula families were compared
to assess the performance of copulas. The family providing
the best fit based on the above criteria was selected for sub-
sequent analysis.

3.5. Streamflow Forecasting and Drought Analysis

[24] The joint dependence modeled using the best copula
was employed to estimate 1 month ahead streamflows. The
probabilistic predictions of streamflows at different quan-
tiles were made using the copula function. The expected
values of monthly streamflows during the model develop-
ment and model testing periods were computed. The range
of forecasts was quantified by estimating predictions at
2.5% and 97.5% probabilities, i.e., 95% confidence interval

for the prediction. The forecasts of streamflow were ana-
lyzed to identify the occurence of extremes, particularly for
droughts in the study area. Given the focus on streamflows
in this study, hydrological droughts were characterized by
the standardized streamflow index that is similar to the SPI
introduced by McKee et al. [1993] for meteorological
drought analysis. The long-term streamflows record was fit-
ted to a gamma probability distribution and then trans-
formed to a standard normal distribution through the
quantiles so that the mean standardized index for a certain
location and particular period (1 month) is zero [Edwards
and McKee, 1997]. A positive value of the index shows the
degree of wetness, while a negative value indicates the se-
verity of streamflow deficit. The ranges of this drought
index for different hydrological conditions, labeled excep-
tionally dry (D4) to exceptionally wet (W4), are presented
in Table 3. This drought severity classification based on
SPI values was adopted from http://droughtmonitor.un-
l.edu/classify.htm. The streamflows estimated using copula
were used for the prediction of droughts in the study areas.

3.6. Analysis for Drought Triggers

[25] The occurrence of hydrological extremes in the study
areas was highly correlated with the local hydroclimatic var-
iables at 1 month lead times, and as such short-term predic-
tions of droughts could be achieved. The joint dependence
information contained in the copula was exploited to obtain
the expected values of the climate precursor anomalies con-
ditioned on a streamflow anomaly. This allowed for identifi-
cation of patterns in the precursors that could trigger
hydrological droughts of different categories.

4. Results and Discussion

4.1. Principal Components Analysis

[26] The anomalies of hydroclimatic predictors and
streamflows at monthly scale were obtained by subtracting
their respective monthly means. The dependence between
the first two principal components of the anomalies of these
variables was represented by a joint asymmetric copula in
the present study and was used to predict streamflows. The
data from January 1958 to December 1993 were used for
developing the statistical model for WS I, whereas model
development period for WS II was from January 1948 to
December 1990. Thus, two thirds of the data were used for
model training and the remainder used for evaluating
model performance.

[27] Starting from the large suite of potential predictors,
PCA was used for dimensionality reduction. The results of
principal components analysis performed on the predictor
variables for the two watersheds are given in Table 4. As
the first two components (PCs) were found to explain more
than 98% of the variance, only these were selected for
modeling streamflows. Next, the correlation values of dif-
ferent pairs (streamflow anomaly and two PCs) for different
lags (1–3 months) were computed. PCs from predictor vari-
ables lagged by only 1 month were adopted for streamflow
forecasting, as significant correlations were observed at this
lag for both WS I and WS II.

4.2. Analysis of Asymmetric Archimedean Copula

[28] The joint dependence between the streamflow
anomaly, PC-1 and PC-2 require that the nature of
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association between them be identified. The scatter plots of
the pairs of predict and predictor variables indicated a
higher degree of dependence between the streamflow
anomaly and PC-1 with a correlation of 0.43 and 0.37 for
WS I and WS II, respectively. The correlation between
streamflow anomaly and PC-2 is 0.08 and 0.02, respec-
tively, for WS I and WS II, whereas the first two PCs are
uncorrelated by nature. Correlations between higher order
PCs are very close to zero.

[29] The scatter plots show that the pairs of variables
have different bivariate dependence structures that cannot
be modeled by the symmetric copulas. They are not
included in the paper for the sake of brevity. The Kendall’s
� values of the various pairs of these variables are listed in
Table 5. Given this nature of dependence, a class of asym-
metric Archimedean copulas were adopted wherein the
streamflow anomaly and PC-1 was coupled by a copula C2,
and this structure was then associated with PC-2 by another
copula C1.

[30] From the streamflow anomaly values and the two
PCs, their rank-based nonparametric marginal probabilities
u1, u2 and u3, respectively, were calculated for modeling
the copula function. The properties of asymmetric Archi-
median copulas are mentioned in section 3.2. However, as
the study data set did not conform to the requirement of the
M12 nested 3-copula family that �12; �23; �13 2 0:333; 1½ �
(Table 2), this copula family was rejected for both study
watersheds.

4.3. Parameter Estimation

[31] The parameters of the nested copula were estimated
using the CML method [Genest et al., 1995; Kojadinovic
and Yan, 2011]. The parameter values must conform to the
range specified for each class of copula. The condition that

the more nested variables have a stronger degree of de-
pendence among them, that is, �2 � �1 2 0;1½ Þ was satis-
fied by the M3 and M4 families, and the condition
�2 � �1 2 1;1½ Þ was satisfied by the M5 and M6 families
of copula. The estimated values of the copula parameters
and the maximum likelihood value obtained for each of the
copula families are listed in Table 5.

4.4. Goodness-of-Fit Tests

[32] From the copula families evaluated in the study, the
best copula was selected using popular goodness-of-fit meas-
ures. The probability distribution function of different copula
families and the empirical copula are plotted in Figure 2.
The performance statistics computed for the probability dis-
tribution function between the empirical and estimated copu-
las are given in Table 6. The M6 copula family was found to
have lowest value of Sn and Tn statistics calculated for WS I.
The goodness-of-fit for this copula family is also evident
from Figure 2a. The lowest value of Sn and Tn was obtained
for M6 copula in the case of WS II. It also provided the best
distribution fit among all copula models in Figure 2b. Plots
in Figure 3 show the performance of only the M6 copula for
different months, suggesting that the dependence structure
of the first two principal components of anomalies of the
hydroclimatic variables and streamflow anomalies could be
modeled by the same M6 copula family for all months in
both study watersheds.

4.5. Streamflow Prediction Using Copula

[33] Given u2 and u3 (the rank-based values of PCs
extracted from the predictors), the probability distribution
of u1 (derived from streamflow anomalies) was generated
using the M6 copula model (Table 2). The streamflow
anomalies corresponding to different quantiles were calcu-
lated from this CDF. The rank-based nonparametric mar-
ginal probabilities at 0.025, 0.5, and 0.975 quantiles were

Table 3. Range of Drought Index for Different Hydrological
States

State Description Drought Index

D4 Exceptional drought �2 or less
D3 Extreme drought �1.6 to �1.9
D2 Severe drought �1.3 to �1.5
D1 Moderate drought �0.8 to �1.2
D0 Abnormally dry �0.5 to �0.7
Normal Normal condition �0.4 to 0.4
W0 Abnormally wet 0.5–0.7
W1 Moderately wet 0.8–1.2
W2 Severely wet 1.3–1.5
W3 Extremely wet 1.6–1.9
W4 Exceptionally wet 2 or more

Table 4. Principal Components and the Explained Variance

Principal
Component

Eigenvalues
Explained Variance

(%)

WS I WS II WS I WS II

1 4158.98 3535.89 80.52 81.17
2 943.94 773.00 18.27 17.75
3 33.95 29.50 0.66 0.68
4 22.83 11.54 0.44 0.26
5 2.96 3.13 0.06 0.07
6 2.19 2.59 0.04 0.06
7 0.51 0.57 0.01 0.01

Table 5. Kendall’s � and Parameter � for Different Copulas

�12 �13 �23

Nested Copula
Family

Maximum Likelihood Estimate

�1 �2

Maximum Like-
lihood Value

WS I WS II WS I WS II WS I WS II WS I WS II WS I WS II WS I WS II

0.34 0.28 0 0.02 0 0 M3 0.005 0.185 3.35 2.71 55.71 47.12
M4 0.005 0.001 0.69 0.63 45.34 48.93
M5 1.08 1.10 1.57 1.35 44.73 28.33
M6 1.04 1.05 1.45 1.31 56.17 41.01
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calculated and transformed into the streamflow anomaly
values; subsequently, the estimates of streamflows for the
next month were obtained. Streamflows simulated for the
model development period were compared with the
observed flows for evaluating model performance.

[34] The model developed for WS I was tested for the
period January 1994 to December 2010, while model test-
ing was carried out for the period 1991–2010 for WS II.
The PCA coefficients obtained for predictors during model
development period were used to obtain the PCs for the
testing period as well. The predicted streamflow values for
the model development and testing periods are compared
with corresponding observed flows in Figures 4a, 4b, 5a,

and 5b for the two watersheds. The uncertainty in the pre-
dictions is quantified by the plot of interquantile range of
predicted streamflows. Most of the observed flows lie
within the predicted range during the model development
periods in WS I. Typically, low flows in the late 1960s and
1970s are in close agreement with the expected values of
streamflows obtained from the model (Figure 4a). The low
flows during the testing period, especially in the 1990s,
match well with the expected values in Figure 4b. How-
ever, this is not the case with high flows in WS I during
both training and testing periods, where 1 month lead fore-
casts underestimate the observed peaks. In WS II, the
recorded flows fall within the range of probabilistic predic-
tions offered by the developed model. In Figure 5a, the pre-
dicted low flows in the 1950s, 1960s, and 1980s conform to
observations. During the testing period also, the model per-
formed well with low flow predictions (Figure 5b). The
peak flows for both training and testing periods were typi-
cally underestimated perhaps because of the small numbers
of training samples in this range. Additionally, the box
plots for model development and testing periods in WS I
and WS II in Figures 4c and 5c, respectively, indicate that
though the model performance is not satisfactory in the

Figure 2. Comparison plots of probability distributions of different copula families used in (a) WS I
and (b) WS II.

Table 6. Goodness-of-Fit Test Statistics for Different Copulas

Nested Copula
Family

Sn Tn

WS I WS II WS I WS II

M3 0.064 0.061 0.038 0.038
M4 0.105 0.116 0.051 0.044
M5 0.046 0.053 0.040 0.044
M6 0.043 0.043 0.038 0.041

Figure 3. Plots showing M6 copula fit for each month in (a) WS I and (b) WS II.
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case of high flows, low flows are estimated well. Overall,
the predictive capability of the model was found to favor
low flow conditions, prompting us to explore the develop-
ment of droughts over the two study watersheds. The coef-
ficients of determination (R2) values obtained were 0.64
and 0.53, respectively, for the model development and test-
ing periods in WS I, and 0.58 and 0.50, respectively, for
WS II. Comparisons with state-of-the-art statistical models

[Tripathi and Govindaraju, 2008] using the same set of
predictors for streamflow showed similar performance, but
the results are not reported here for brevity.

4.6. Drought Analysis

[35] The results of the drought analysis carried out for
the model development period (January 1948 to December
1993) for WS I are shown in Figure 6a. There were few

Figure 4. (a, b) Comparison plots of observed and predicted streamflows in WS I during (a) model de-
velopment period and (b) model testing period (lower and upper quantile curves correspond to 0.025 and
0.975 quantiles respectively), and (c) box plots for observed and predicted (expected) values of monthly
streamflows during model development and testing periods in WS I. On each box, the central mark is the
median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme
data points not considered outliers, and outliers are plotted individually with a plus symbol.
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occurences of D3 and D4 classes of droughts during the
model development periods, and mild (D0) and moderate
(D1) droughts prevailed in most of the drought months.
The drought index values obtained from the expected
streamflows provided good forecasts of dry as well as wet

conditions. The drought analysis was then carried out for
the testing period and compared with the observed condi-
tions. Few occurences of D2 and D1 classes of droughts
marked the testing period. Wet conditions dominated dur-
ing this period, with most of them being underestimated by

Figure 5. (a, b) Comparison plots of observed and predicted streamflows in WS II during (a) model de-
velopment period and (b) model testing period (lower and upper quantile curves correspond to 0.025 and
0.975 quantiles respectively), and (c) box plots for observed and predicted (expected) values of monthly
streamflows during model development and testing periods in WS II. On each box, the central mark is
the median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most
extreme data points not considered outliers, and outliers are plotted individually with a plus symbol.
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the model (Figure 6b). The plots for drought indices calcu-
lated for WS II in Figures 7a and 7b also indicate that dif-
ferent drought categories were better predicted than the wet

categories. The sequences of drought months in different
subperiods during the entire model development and testing
periods were also well predicted.

Figure 6. (a) Drought index values during the model development period in WS I and (b) drought
index values during the model testing period in WS I.

Figure 7. (a) Drought index values during the model development period in WS II and (b) drought
index values during the model testing period in WS II.
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[36] Apart from visual inspection, the model perform-
ance for multiple category classification of streamflows
was assessed by computing the contingency coefficient C,
proposed by Pearson [1904]. This coefficent is a measure
of degree of association between multiple categories in a
contingency table classifying N samples [Gibbons and
Chakraborti, 2011] and mathematically expressed as:

C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q

Qþ N

� 	s
ð12Þ

where Q is a statistic that tests the null hypothesis that there
is no association between observed and predicted catego-
ries. It is expressed as:

Q ¼
Xr

i¼1

Xk

j¼1

NXij � Xi:Y:j
� �2

NXi:Y:j
ð13Þ

where r and k are the number of categories, Xij is the num-
ber of cases falling in ith observed and jth predicted cate-

gory, Xi: ¼
Pk
j¼1

Xij and Yj: ¼
Pr
i¼1

Xij.

[37] The statistic Q approximately follows chi-square
distribution with degrees of freedom (dof) equal to
(r� 1)(k� 1). Thus, the null hypothesis (no association)
can be rejected if the p value is very low. Higher values of
C correspond to better association. The value of C cannot
exceed 1 theoretically and has an upper bound of
Cmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t � 1ð Þ=t

p
where t ¼ min

�
r; kð ÞÞ [Gibbons

and Chakraborti, 2011]. The ratio C/Cmax is often used as a
measure of degree of association.

[38] In order to ensure sufficient data for robust statistics,
a contingency table with three different categories, dry,
normal, and wet, was prepared. The extreme categories
were merged to ensure that the observations and predic-
tions are available sufficiently in all categories. These con-
tingency tables are shown in Table 7 for WS I and WS II,
respectively. Thus, both r and k are 3, and dof is 4. The sta-
tistic Q, contingency coefficient C, and the measure of
degree of association C/Cmax are shown at the end of Table
7. The low p values for the statistic Q indicate that the null
hypothesis of no association between observed and pre-
dicted categories should be rejected. The degree of associa-
tion was found to be reasonable for both the watersheds
during model development as well as testing periods.

4.7. Analysing the Drought Triggers

[39] Using the modeled asymmetric copula dependence
function, the conditions that trigger hydrological droughts
or extremes in the watershed were examined. The triggers
for various streamflow conditions were generated using the
conditional copula. The procedure is illustrated as follows.
Given a certain streamflow anomaly quantile �, let y�1 and
y�2 correspond to the first and second PCs conditioned on
the streamflow anomaly value. The quantities y�1 and y�2 are
obtained from the M6 copula for the particular watershed.
Since these two PCs explain over 98% of the total varia-
tion, the other principal components remain unaffected by
the choice of the streamflow quantile. Our goal is to find
the expected values of the precursor variables x�i ; i ¼

Table 7. Contingency Table and Degree of Association Between Observed and Predicted Drought Categories for WS I (Top) and WS II
(Bottom)

Predicted Category

Model Development Period (1958–1993) Model Testing Period (1994–2010)

Observed Category Observed Category

Dry Normal Wet Dry Normal Wet

Dry 71 18 11 18 9 5
Normal 78 38 39 30 23 16
Wet 31 62 84 8 30 65
Q 85.75 52.92
DOF 4 4
p value <0.0001 <0.0001
C 0.407 0.454
Cmax 0.817 0.817
C/Cmax 0.498 0.556

Predicted Category

Model Development Period (1948–1990) Model Testing Period (1991–2010)

Observed Category Observed Category

Dry Normal Wet Dry Normal Wet

Dry 107 24 23 40 14 15
Normal 63 50 45 24 19 13
Wet 33 80 91 12 39 64
Q 105.54 54
DOF 4 4
p value <0.0001 <0.0001
C 0.412 0.429
Cmax 0.817 0.817
C/Cmax 0.505 0.525
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1; 2; :::; 7 that would correspond to this particular stream-
flow quantile. If aij are the PCA coefficients for the data
set, then the following equation provides the conditional
expectation of the precursor variables:

A½ � x�f g ¼ y�f g ð14Þ

where aij is the ijth element of the matrix [A], y�1 and y�2 are
computed from the M6 copula, and yj; j ¼ 3; 4; :::; 7 are
simply the expected values of the principal
components(
0).

[40] The expected values of PC-1 and PC-2 conditioned
on various streamflow anomaly quantiles (corresponding to
different � values) are shown in Table 8 for both
watersheds.

[41] The expected anomaly values of all the predictor
variables for different values corresponding to different
streamflow anomalies are shown in Table 9. Low flows cor-
respond to smaller values of soil moisture, temperature,
precipitation, evaporation, and runoff of the previous
month in both watersheds. Sea level pressure anomaly var-
ied inversely with the streamflow anomaly for WS I and

WS II suggesting that increase in sea-level pressure from
the long-term mean can enhance the chances of droughts in
the regions. Increase in wind speed was found to trigger
droughts in WS I, in contrast to the trend observed in the
case of WS II. The dissimilar trends in some variables sug-
gest that drought triggers are likely to be specific to each
watershed.

[42] The conditional expectations of anomalies of differ-
ent precursors corresponding to different streamflow quan-
tiles (Table 9) were utilized to develop potential triggers for
each drought category. The long-term monthly means of
hydroclimatic variables were added to their expected anom-
aly values to carry out this analysis. The resulting precursor
values were then associated with the 1 month lead drought
index values. From the expected streamflow anomaly,
streamflows for each month were computed and correspond-
ing drought indices were calculated. The trigger analysis is
limited to low flow conditions corresponding to droughts
reflecting the better model performance for flows in this
range. The plots in Figures 8a and 8b show the expected pre-
cursor range in each month obtained for different drought
classes for WS I and WS II, respectively. If the values of the
hydroclimatic variables fall within the suggested range for
any class of drought, then that drought would likely occur in
the succeeding month. For WS I, soil moisture, precipita-
tion, and runoff are able to offer a range of predictor values
for different drought categories as shown in Figure 8a. Some
months (May to July) do not show any range of potential
predictor values for certain drought classes, implying the
likelihood of such droughts being very low in those periods
in WS I. While soil moisture, precipitation, and runoff show
some variability with drought classes in WS II, the other var-
iables stay within a very tight band for any given month
(Figure 8b). Thus, only these three variables are capable of
resolving amongst different drought classes for the study
watersheds. Low variability is manifested in the expected
anomaly values of temperature, evaporation, sea-level pres-
sure, and wind speed in Table 9.

Table 9. Conditional Expectations (in Terms of Anomalies of Hydro-Climatic Variables) Associated With Streamflow Anomaly Values

Expected Streamflow
Anomaly (cumecs)

Hydro-Climatic Triggers in Terms of Expected Values of Anomalies

Soil Moisture
Anomaly (mm)

Temperature
Anomaly (�C)

Precipitation
Anomaly (mm)

Evaporation
Anomaly (mm)

Sea-Level Pressure
Anomaly (mbar)

Wind Speed
Anomaly (m/s)

Runoff
Anomaly (mm)

WS I
�172.84 �37.33 �0.0032 �31.28 �1.26 0.21 0.0017 �7.18
�99.47 �25.74 �0.0072 �22.35 �0.86 0.15 0.0005 �5.02
�63.19 �19.94 �0.0050 �17.23 �0.67 0.12 0.0005 �3.88
�27.13 �11.52 �0.0072 �10.63 �0.38 0.07 �0.0003 �2.31
�16.94 �6.12 �0.0085 �6.38 �0.19 0.05 �0.0008 �1.30
�5.71 �0.74 �0.0070 �1.72 �0.01 0.01 �0.0008 �0.25
58.38 19.96 �0.0096 14.94 0.69 �0.10 �0.0024 3.66
123.30 34.22 �0.0157 25.74 1.18 �0.17 �0.0040 6.29
310.66 95.51 �0.0345 73.30 3.29 �0.49 �0.0100 17.70
WS II
�27.65 �27.61 �0.127 �20.92 �0.94 0.126 �0.046 �3.42
�17.27 �18.44 �0.102 �15.45 �0.62 0.097 �0.036 �2.37
�10.62 �13.29 �0.080 �11.73 �0.44 0.075 �0.028 �1.74
�4.86 �3.80 �0.050 �5.75 �0.17 0.042 �0.016 �0.64
�3.26 �0.27 �0.041 �3.66 0.01 0.031 �0.012 �0.24
�1.20 3.47 �0.016 �0.17 0.13 0.008 �0.004 0.26
8.79 16.20 0.023 7.75 0.57 �0.036 0.012 1.74
20.38 27.44 0.065 15.39 0.95 �0.079 0.027 3.08
53.54 67.84 0.215 42.84 2.34 �0.238 0.082 7.89

Table 8. Expected Principal Component Values for Various
Quantiles of Streamflow

Streamflow
Anomaly
Quantile

Streamflow
Anomaly (cumecs)

Expected PC-1
Value

Expected PC-2
Value

WS I WS II WS I WS II WS I WS II

0.01 �172.84 �27.65 �49.10 �34.41 �3.79 �5.33
0.1 �99.47 �17.27 �34.31 �23.69 �3.25 �4.86
0.2 �63.19 �10.62 �26.54 �17.36 �2.44 �4.03
0.4 �27.13 �4.86 �15.73 �6.11 �1.97 �3.26
0.5 �16.94 �3.26 �8.79 �1.98 �1.64 �3.10
0.6 �5.71 �1.20 �1.63 2.98 �0.96 �1.79
0.8 58.38 8.79 25.20 18.02 0.57 �0.86
0.9 123.30 20.38 43.28 31.62 1.08 0.54
0.99 310.66 53.54 121.66 80.46 4.20 5.56
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[43] The precursor ranges developed in this manner were
validated by means of scatter plots between the observed and
modeled values of variables over the model development and
testing periods (Figures 9a and 9b) for all classes of droughts.
These scatter plots demonstrate good agreement between the
observed and modeled triggers in both watersheds. The scat-
ter is less in the case of soil moisture, precipitation, runoff,
evaporation, and temperature in both watersheds. Among the
predictors, wind speed shows the most scatter making it the
least reliable precursor for both watersheds. The modeled
triggers for soil moisture, precipitation, and runoff values are
underpredicted compared to observations during calibration
as well as validation. Additionally, correlation values for all
the trigger variables were calculated and tabulated in Table
10. High correlations in some predictors (for example, tem-
perature and evaporation in WS I and WS II), however, were
not useful as they were found incapable of resolving among
the different drought categories.

[44] The results indicate that drought trigger information
retrieved in this manner has potential for applications in

hydrologic drought preparedness. Even though individual
variables show scatter, if multiple variables fall close to
their trigger values, the confidence in their effectiveness as
hydrologic drought triggers will improve. Hence, the com-
bined behavior of predictor variables needs to be consid-
ered when estimating potential drought triggers.

5. Summary and Conclusions

[45] This study provides a novel method for developing
drought triggers by combining the strengths of PCA for
dimensionality reduction and copulas for modeling the
joint dependence between variables. The first two PCs were
found capable of explaining the variability in the anomaly
set of predictor variables for both study watersheds. The
joint dependence of the streamflow anomaly and the two
principal components was modeled by a scale-free associa-
tion using a suitable asymmetric 3-copula selected based
on goodness-of-fit statistics. The developed model was first
tested for forecasting streamflows in two study watersheds.

Figure 8. Contour plots showing expected ranges of different hydroclimatic variables as precursors to
droughts in (a) WS I and (b) WS II.
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The study focused on 1 month lead predictions because
correlations between the principal components and stream-
flow anomaly diminished rapidly beyond a lag of 1 month.
Underprediction of peak flows was observed in the results
of both watersheds, but low streamflows were reasonably
predicted allowing hydrologic drought studies. Drought
index values based on standardized flows were computed
to identify the occurrences of droughts during the model
development and testing periods in the two study regions

[46] The conditional dependence of the principal compo-
nents PC-1 and PC-2 on streamflow anomaly was used to
determine the drought triggers in the two watersheds. The

precursors to droughts were expressed in terms of the
anomaly values of the climatic variables. Negative anoma-
lies of soil moisture, precipitation, evaporation, tempera-
ture, and runoff, and increased sea-level pressure and wind
speeds were obtained as potential drought triggers for WS
I. Similarly, increased sea level pressure conditions and
reduced soil moisture, precipitation, evaporation, tempera-
ture, runoff, and wind speeds from their respective long-
term means led to drought conditions in WS II.

[47] Further, the patterns of various hydroclimatic varia-
bles as potential precursors to different categories of
droughts were examined for the two watersheds. The ranges
of predictor values that led to different drought conditions
were estimated from the expected precursor values for low
streamflow quantiles. The trigger analysis results were vali-
dated by comparing the observed hydroclimatic variables
with their expected trigger values for the model development
and testing periods. The correlation values computed indi-
cated that the analysis could yield reliable information on
the pattern of drought triggers for both the watersheds.

[48] The following conclusions are derived from this study:
[49] 1. Drought triggers are likely to be specific to water-

sheds. Even though the two study watersheds are located in
the same part of the world and have similar land use distri-
bution, local conditions influence streamflows especially at
monthly time scales.

Figure 9. Scatter plots of different hydroclimatic precursors (modeled versus observed) for model de-
velopment and testing periods in (a) WS I and (b) WS II.

Table 10. Correlation Values Between Observed and Modeled
Drought Precursors

HydroClimatic
Precursor

WS I WS II

Calibration Validation Calibration Validation

Soil moisture 0.57 0.58 0.41 0.44
Precipitation 0.35 0.29 0.48 0.44
Runoff 0.59 0.47 0.41 0.45
Evaporation 0.80 0.83 0.80 0.82
Temperature 0.81 0.82 0.82 0.85
Sea level pressure 0.58 0.43 0.50 0.52
Wind speed 0.45 0.56 0.48 0.52
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[50] 2. Using copulas, conditional expectations of first
two PCs based on different quantiles of streamflow anoma-
lies provide a method for estimating drought triggers.
Among all the precursors, soil moisture, precipitation, and
runoff showed the greatest potential for assessing different
classes of droughts for both watersheds. The other varia-
bles, despite showing strong seasonal trends, demonstrated
little capability for resolving the different drought classes.

[51] 3. Validation results for triggers over all drought
classes show results with different degrees of variability.
Even with the scatter present for single (individual) varia-
bles, if triggers for multiple variables fall within expected
ranges, the confidence in the trigger would improve. Hence,
it is recommended that precursors for droughts be exam-
ined in combination by using multiple input variables.

[52] Even though the results and conclusions are specific
to study watersheds, the method shows promise for applica-
tion to different watersheds. An important limitation is that
the level of dimensionality reduction that can be achieved
in different watersheds cannot be known a priori. If multi-
ple predictors were to be important, the model for con-
structing the joint distribution would be too complex for
practical purposes except in limited cases modeled using
Gaussian copulas. Data limitations also continue to be a se-
rious challenge for many hydrologic studies. Large amount
of data need to be used for capturing the trigger behaviors
in drought studies. The model development and testing
periods were short in this study, and the methodology per-
forms reasonably well even for the small record lengths
available here. Future efforts employing more hydrocli-
matic variables and different watersheds will help develop
better understanding of trigger mechanisms for droughts.

[53] Acknowledgments. The first author, as a BOYSCAST Fellow,
acknowledges the support of Department of Science and Technology
(DST), Govt. of India, for offering the fellowship. He also wishes to
acknowledge the support of School of Civil Engineering, Purdue Univer-
sity, USA where this study was undertaken. Studies of the second and third
authors were supported in part by the National Science Foundation under
Grants ACI 0753116 and AGS 1025430, and by USDA NIFA award num-
ber 2011-67019-21122. This support is gratefully acknowledged. Any
opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of
the National Science Foundation or the USDA.

References
Anmala, J., B. Zhang, and R. S. Govindaraju (2000), Comparison of ANNs

and empirical approaches for predicting watershed runoff, J. Water
Resour. Plann. Manage., 126(3), 156–166, doi:10.1061/(ASCE)0733–
9496(2000)126:3(156).

Charusombat, U., and D. Niyogi (2011), A hydroclimatological assessment
of regional drought vulnerability: A case study of Indiana droughts,
Earth Interact., 15(26), 1–65, doi:10.1175/2011EI343.1.

Deheuvels, P. (1981), A Non Parametric Test for Independence, Publ. de
l’Inst. de Stat. de l’Univ. de Paris, vol. 26, pp. 29–50, Inst. de Stat. Univ.
de Paris, Paris, France.

Dracup, J. A., K. S. Lee, and E. G. Paulson (1980), On the definition of
droughts, Water Resour. Res., 16(2), 297–302, doi:10.1029/
WR016i002p00297.

Edwards, D. C., and T. B. McKee (1997), Characteristics of 20th century
drought in the United States at multiple time scales, Climatol. Rep., 97-2,
Dep. of Atmos. Sci., Colo. State Univ., Fort Collins.

Embrechts, P., F. Lindskog, and A. McNeil (2003), Modelling dependence
with copulas and applications to risk management, in Handbook of Heavy
Tailed Distributions in Finance, pp. 329–384, Elsevier, New York.

Fan, Y., and H. van den Dool (2004), Climate Prediction Center global
monthly soil moisture data set at 0.5� resolution for 1948 to present, J.
Geophys. Res., 109, D10102, doi:10.1029/2003JD004345.

Favre, A.-C., S. El Adlouni, L. Perreault, N. Thi�emonge, and B. Bob�ee
(2004), Multivariate hydrological frequency analysis using copulas,
Water Resour. Res., 40, W01101, doi:10.1029/2003WR002456.

Federal Emergency Management Agency (1995), National Mitigation
Strategy; Partnerships for Building Safer Communities, 45 pp., Mitiga-
tion Dir., Washington, D. C.

Genest, C., and A. Favre (2007), Everything you always wanted to know
about copula modeling but were afraid to ask, J. Hydrol. Eng., 12(4),
347–368, doi:10.1061/(ASCE)1084-0699(2007)12:4(347).

Genest, C., K. Ghoudi, and L.-P. Rivest (1995), A semiparametric estima-
tion procedure of dependence parameters in multivariate families of dis-
tribution, Biometrika, 82(3), 543–552.

Genest, C., B. R�emillard, and D. Beaudoin (2009), Goodness-of-fit tests for
copulas: A review and a power study, Insur. Math. Econ., 44(2), 199–
213, doi:10.1016/j.insmatheco.2007.10.005.

Gibbons J. D., and S. Chakraborti (2011), Nonparametric Statistical Infer-
ence, 5th ed., Chapman and Hall, Boca Raton, Fla.

Grimaldi, S., and F. Serinaldi (2006), Asymmetric copula in multivariate
flood frequency analysis, Adv. Water Resour., 29(8), 1155–1167,
doi:10.1016/j.advwatres.2005.09.005.

Huang, J., H. van den Dool, and K. P. Georgakakos (1996), Analysis of
model-calculated soil moisture over the United States (1931–93) and appli-
cation to long-range temperature forecasts, J. Clim., 9(6), 1350–1362.

Joe, H. (1997), Multivariate Models and Dependence Concepts, Chapman
and Hall, London.

Jolliffe, I. T. (1986), Principal Component Analysis, Springer, New York.
Kalnay, E., et al. (1996), The NCEP/NCAR 40-year reanalysis project,

Bull. Am. Meteorol. Soc., 77(3), 437–471, doi:10.1175/1520-0477(1996)
077<0437:TNYRP>2.0.CO;2.

Kao, S.-C., and R. S. Govindaraju (2008), Trivariate statistical analysis of
extreme rainfall events via the Plackett family of copulas, Water Resour.
Res., 44, W02415, doi:10.1029/2007WR006261.

Kao, S.-C., and R. S. Govindaraju (2010a), A copula-based joint deficit
index for droughts, J. Hydrol., 380(1–2), 121–134, doi:10.1016/
j.jhydrol.2009.10.029.

Kao, S.-C., and R. S. Govindaraju (2010b), Reply to Comment by T. P.
Hutchinson on ‘‘Trivariate statistical analysis of extreme rainfall events
via Plackett family of copulas,’’ Water Resour. Res., 46, W04802,
doi:10.1029/2009WR008774.

Keyantash, J. A., and J. A. Dracup (2004), An aggregate drought index:
Assessing drought severity based on fluctuations in the hydrologic cycle
and surface water storage, Water Resour. Res., 40, W09304,
doi:10.1029/2003WR002610.

Kojadinovic, I., and J. Yan (2011), A goodness-of-fit test for multivariate
multiparameter copulas based on multiplier central limit theorems, Stat.
Comput., 21(1), 17–30, doi:10.1007/s11222-009-9142-y.

Lins, H. F. (1985), Interannual streamflow variability in the United States
based on principal components, Water Resour. Res., 21(5), 691–701,
doi:10.1029/WR021i005p00691.

Madadgar, S., and H. Moradkhani (2013), Drought analysis under climate
change using copula, J. Hydrol. Eng., 746–759, doi:10.1061/
(ASCE)HE.1943–5584.0000532.

Maity, R., and D. Nagesh Kumar (2008a), Probabilistic prediction of hydro-
climatic variables with nonparametric quantification of uncertainty, J.
Geophys. Res., 113, D14105, doi:10.1029/2008JD009856.

Maity, R., and D. Nagesh Kumar (2008b), Basin-scale stream-flow fore-
casting using the information of large-scale atmospheric circulation
phenomena, Hydrol. Processes, 22(5), 643–650, doi :10.1002/
hyp.6630.

Mallya, G., S. Tripathi, S. Kirshner, and R. S. Govindaraju (2013), Proba-
bilistic assessment of drought characteristics using a hidden Markov
model, J. Hydrol. Eng., 18(7), 834–845, doi:10.1061/(ASCE)HE.1943-
5584 256.0000699.

Maurer, E. P., D. P. Lettenmaier, and N. J. Mantua (2004), Variability and
potential sources of predictability of North American runoff, Water
Resour. Res., 40, W09306, doi:10.1029/2003WR002789.

McHugh, M. J., and J. C. Rogers (2001), North Atlantic oscillation influ-
ence on precipitation variability around the Southeast African conver-
gence zone, J. Clim., 14(17), 3631–3642, doi:10.1175/1520-
0442(2001)014<3631:NAOIOP>2.0.CO;2.

McKay, G. A., R. B. Godwin, and J. Maybank (1989), Drought and hydro-
logical drought research in Canada: An evaluation of the state of the art,
Can. Water Resour. J., 14(3), 71–84, doi:10.4296/cwrj1403071.

McKee, T. B., N. J. Doesken, and J. Kleist (1993), The relationship of
drought frequency and duration to time scales, in Proceedings of the 8th

MAITY ET AL.: IDENTIFICATION OF HYDROLOGIC DROUGHT TRIGGERS

4491



Conference on Applied Climatology, pp. 179–184, Am. Meteorol. Soc.,
Boston, Mass.

Mishra, A. K., and V. P. Singh (2010), A review of drought concepts, J.
Hydrol., 39(1–2), 202–216.

Nelsen, R. B. (2006), An Introduction to Copulas, Springer, New York.
Pearson, K. (1904), On the Theory of Contingency and its Relation to Asso-

ciation and Normal Correlation, Draper’s Comp. Res. Mem. Biometric
Ser. I, Dulau and Co., London, U. K.

Preisendorfer, R. W. (1988), Principal Component Analysis in Meteorology
and Oceanography, Elsevier, New York.

Ropelewski, C. F., and M. S. Halpert (1996), Quantifying Southern
oscillation-precipitation relationships, J. Clim., 9(5), 1043–1059,
doi:10.1175/1520-0442(1996)009<1043:QSOPR>2.0.CO;2.

Salas, J. D., C. Fu, and B. Rajagopalan (2011), Long-range forecasting of Col-
orado streamflows based on hydrologic, atmospheric, and oceanic data, J.
Hydrol. Eng., 16, 508–520, doi:10.1061/(ASCE)HE.1943–5584.0000343.

Salvadori, G., and C. De Michele (2004), Frequency analysis via copulas:
Theoretical aspects and applications to hydrological events, Water
Resour. Res., 40, W12511, doi:10.1029/2004WR003133.

Shiau, J.-T., S. Feng, and S. Nadarajah (2007), Assessment of hydrological
droughts for the Yellow River, China, using copulas, Hydrol. Processes,
21(16), 2157–2163, doi:10.1002/hyp.6400.

Sklar, A. (1959), Fonctions de r�epartition �a n dimensions et leurs marges,
Publ. de l’Inst. de Stat. de l’Univ. de Paris, vol. 8, pp. 229–231, Inst. de
Stat. Univ. de Paris, Paris, France.

Srinivasan, R., and J. G. Arnold (1994), Integration of a basin-scale water
quality model with GIS, J. Am. Water Resour. Assoc., 30(3), 453–462,
doi:10.1111/j.1752-1688.1994.tb03304.x.

Steinemann, A. (2003), Drought indicators and triggers: A stochastic
approach to evaluation, J. Am. Water Resour. Assoc., 39(5), 1217–1233,
doi:10.1111/j.1752-1688.2003.tb03704.x.

Tripathi, S., and R. S. Govindaraju (2008), Engaging uncertainty in
hydrologic data sets using principal component analysis : BaNPCA
algorithm, Water Resour. Res., 44, W10409, doi :10.1029/
2007WR006692.

Whelan, N. (2004), Sampling from Archimedean copulas, Quant. Finan.,
4(3), 339–352, doi:10.1088/1469–7688/4/3/009.

Wong, G., M. Lambert, M. Leonard, and A. Metcalfe (2010), Drought
analysis using trivariate copulas conditional on climatic states, J.
Hydrol. Eng., 15(2), 129–141, doi :10.1061/(ASCE)HE.1943–
5584.0000169.

Wu, C. L., K. W. Chau, and Y. S. Li (2009), Predicting monthly streamflow
using data-driven models coupled with data-preprocessing techniques,
Water Resour. Res., 45, W08432, doi:10.1029/2007WR006737.

Xu, C.-Y., and V. P. Singh (2004), Review on regional water resources
assessment models under stationary and changing climate, Water Resour.
Manage., 18(6), 591–612, doi:10.1007/s11269-004-9130-0.

Zhang, L., and V. Singh (2006), Bivariate flood frequency analysis using
the copula method, J. Hydrol. Eng., 11(2), 150–164, doi:10.1061/
(ASCE)1084-0699(2006)11:2(150).

MAITY ET AL.: IDENTIFICATION OF HYDROLOGIC DROUGHT TRIGGERS

4492


	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l

