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Abstract
Long-range (1 to 6  months in advance) prediction of droughts is challenging due to its 
inherent complexity. In this study, we developed a Long-Range Hydrological Drought 
Prediction Framework (HDPF), empowered by a Deep Learning (DL) approach. Starting 
with two state-of-the-art approaches, namely Long Short-Term Memory (LSTM), and one-
dimensional Convolutional neural networks (Conv1D), we picked out Conv1D to develop 
the HDPF, being its relatively better performance. The devised HDPF leverages a com-
prehensive set of eight meteorological precursors, harnessing their collective potential to 
offer predictions of reasonable accuracy (> 70%). The developed HDPF is able to extract 
the hidden information from the pool of meteorological precursors along with its evolution 
over time and influence on the upcoming drought status. Additionally, while comparing 
the performance of the Conv1D against LSTM, it is noticed that the performance of LSTM 
is at par with that of Conv1D. However, considering the model parsimony and computa-
tional time we advocate the usage of Conv1D. Moreover, comparison against other popu-
lar machine learning models, such as Support Vector Regression (SVR) and Feedforward 
Neural Network (FNN) further affirms the superiority as well as benefits of Conv1D. The 
developed HDPF can also be useful to other basins in a different climate regime, subject 
to its recalibration with the location-specific datasets. Overall, this study advances drought 
prediction methodologies by demonstrating the potential of DL techniques while under-
scoring the utility and adaptability of the proposed Conv1D-based HDPF.
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1 Introduction

Drought is one of the most severe, recurring and precarious natural disasters that affects 
around 55 million people every year globally (Pham et al. 2021; Poonia et al. 2021). It is 
typically caused by a precipitation deficiency, although temperature and evapotranspira-
tion anomalies may also contribute (Mishra and Singh 2010). Moreover, variations in land 
use and land cover patterns, along with reservoir mismanagement, may further influence 
drought progression. Thus, drought is driven by interactions among water management, 
land surface processes, and climate anomalies (Hao et al. 2018).

Droughts can be broadly classified into four categories, namely meteorological, agricul-
tural, hydrological and socio-economic droughts (Mishra and Singh 2010; Crausbay et al. 
2017; Piri et al. 2023). This study focuses on hydrological droughts, which is recognized 
as a multifaceted phenomenon shaped by diverse hydrometeorological factors having sig-
nificant impacts on water availability, power generation, water quality, riparian habitats, 
recreation and crop failure (Akbari et  al. 2015). The critical challenge in this endeavour 
lies in advancing long-term predictions, a pivotal facet of effective drought management 
(Deo et al. 2017; Hao et al. 2018). According to Deo et al. (2017), an effective drought 
forecasting model consists of four fundamental components: i) selection of drought indi-
ces ii) identification of causal attributes iii) choice of model, and iv) evaluation of model 
outcome.

Drought modeling employs diverse approaches, with a recent focus on Machine Learn-
ing (ML) for enhanced performance (Anshuka et al. 2019; Roushangar et al. 2022; Jariwala 
and Agnihotri 2023). While detailed discussions about different ML models, data types, 
and variables used in drought-related studies can be found elsewhere (AghaKouchak et al. 
2015; Hao et al. 2018; Fung et al. 2020; Dikshit et al. 2022b), forecasting drought at longer 
leads using ML presents challenges like dimensionality and overfitting (Deo et al. 2017; 
Dikshit et al. 2022b). Deep learning (DL), a new domain of ML, addresses these challenges 
and offers improved approaches (Reichstein et  al. 2019; Latif and Ahmed 2023). Nota-
bly, Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) neural 
networks have been popularly employed, demonstrating reasonably good performance in 
modeling hydroclimatic variables (Ham et al. 2019; Kratzert et al. 2019a, b; Duan et al. 
2020; Khan and Maity 2020; Khan and Maity (2022); Lees et al. 2022). The integration of 
these advanced techniques holds promises for addressing the intricacies of drought fore-
casting at extended lead times. However, their applications in drought prediction is still 
in its early stages, especially in hydrological drought studies on the Indian mainland, with 
limited applications (Maity et al. 2021; Dikshit et al. 2022a).

In summary, most of the reviewed studies have concentrated on leveraging the capabili-
ties of LSTM. A very limited number of DL based data-driven investigations have centred 
on achieving optimal computational efficiency and delving into the capabilities of a one-
dimensional CNN (Conv1D) for predicting hydroclimatic variables, despite its notable per-
formance in diverse domains. Additionally, prediction of hydrological drought using DL 
has not been explored, particularly in the context of the Indian mainland. In light of these 
arguable points, we are motivated to develop a modest and computationally efficient long-
range (up to 6 months in advance) Hydrological Drought Prediction Framework (HDPF) by 
configuring a new Conv1D architecture using meteorological precursors. Notably, the pro-
posed framework is aimed to harness the complex and hidden information from the pool of 
meteorological precursors along with its evolution over time and influence on the upcom-
ing drought status. Furthermore, the effectiveness of the aforementioned Conv1D-based 
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HDPF is established by comparing its performance against three well established mod-
els, namely LSTM, Support Vector Regression (SVR), and Feedforward Neural Network 
(FNN) in predicting hydrological drought up to 6 months in advance.

2  Study Area and Data Used

The central Indian region spanning from the Upper Mahanadi River Basin (UMRB) to the 
Basantpur Gauging Station is chosen to evaluate the predictive capability of the Conv1D-
based HDPF (Fig. 1). Covering 58,426  km2, the UMRB is situated between 19.50° N to 
23.50° N and 80.50° E to 83.50° E, with a topography varying from 151 to 1079 m. Expe-
riencing four distinct seasons—winter, summer, southwest monsoon, and post-monsoon—the 
UMRB faces extreme climate, with summers reaching upto 50 °C and winters dropping 
below 10 °C. Despite an annual precipitation of 1463 mm, mainly during the southwest 
monsoon (June to September), the basin’s uneven distribution makes it vulnerable to 
drought, exacerbated by climate change. The Mahanadi river is the primary watercourse of 
the basin flowing eastward into the Bay of Bengal. Approximately half of the basin is allo-
cated for agriculture, relying on rain-fed rivers and groundwater (Asokan and Dutta 2008).

A set of nine hydrometeorological variables, namely total precipitation, air tempera-
ture, evaporation, surface pressure, soil water, zonal wind speed, meridional wind speed, 
geopotential height, relative humidity and streamflow, is used to develop the proposed 
HDPF. Among the listed hydrometeorological precursors, streamflow data for the Basant-
pur gauging station (Jan 1972 to Feb 2019) was sourced from the Water Resource Infor-
mation System Portal of India (India-WRIS: https:// india wris. gov. in/ wris/#/ River Monit 
oring, accessed in Nov 2022). Other variables were obtained from the fifth generation of 
the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis product 

Fig. 1  Illustration of the Upper Mahanadi River Basin, along with its stream network, elevation and outlet 
point, located in the central belt of Indian mainland

https://indiawris.gov.in/wris/#/RiverMonitoring
https://indiawris.gov.in/wris/#/RiverMonitoring
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(ERA5, https:// www. ecmwf. int/ en/ forec asts/ datas ets/ reana lysis- datas ets/ era5, accessed in 
Nov 2022). ERA5 is a widely used source which provides a range of atmospheric, land, 
and oceanic variables globally at different spatio-temporal scales (viz., spatially 0.1° × 0.1° 
and 0.25° × 0.25°, temporally hourly and monthly). More specifics on dataset processing 
are presented in Section 3.2.

3  Methodology

A flowchart summarising the proposed HDPF built using Conv1D is shown in Fig. 2. In 
the following subsections, an explanation is offered explaining each element involved in 
the development of the framework.

3.1  Selection of Drought Index

In the field of hydrological drought research, prevalent drought indices comprises of the 
Palmer Hydrological Drought Index (PHDI), Standardized Streamflow Index (SSI), Stand-
ardized Runoff Index (SRI), Standardized Reservoir Supply Index (SRSI), Streamflow 
Drought Index (SDI) and Standardized Streamflow Anomaly Index (SSAI) (Makokha et al. 
2016; Hao et al. 2018; Dutta and Maity 2021). The selection of these indices depends on 
the application and research area, each carrying specific advantages and disadvantages. 
In this study, SSAI is chosen to describe above/below-normal flow occurrences, align-
ing with its established robustness in the literature (Chanda and Maity 2015; Rehana and 
Monish 2020). The detailed procedure of calculating SSAI is provided in Supplementary 
Section S1.

3.2  Preparation of Dataset

Initial (raw) collection of datasets obtained from ERA5 and India-WRIS comprises of nine 
hydrometeorological variables as mentioned in Section 2. These organizations ensure the 
quality of the data before making these available (https:// www. ecmwf. int/ en/ about/ media- 
centre/ focus/ 2023/ fact- sheet- reana lysis, https:// india wris. gov. in/ wris/#/ about and https:// 
india wris. gov. in/ downl oads/ Mahan adi% 20Bas in. pdf).

Fig. 2  An illustration of the proposed Conv1D-based Hydrological Drought Prediction Framework (HDPF)

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/about/media-centre/focus/2023/fact-sheet-reanalysis
https://www.ecmwf.int/en/about/media-centre/focus/2023/fact-sheet-reanalysis
https://indiawris.gov.in/wris/#/about
https://indiawris.gov.in/downloads/Mahanadi%20Basin.pdf
https://indiawris.gov.in/downloads/Mahanadi%20Basin.pdf
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The preparation starts with spatial averaging of the gridded data set across the selected 
basin by utilising the area weightage method. Next, the streamflow data, obtained at a daily 
scale, undergoes conversion to a monthly scale, and then to their corresponding SSAI val-
ues through the methodology outlined in Supplementary Section S1. Next, the zonal and 
meridional components of wind speed are converted to a single component, named result-
ant wind speed. In addition to the meteorological precursors, a monthly index (i.e., for 
Jan = 1, Feb = 2, …., and Dec = 12) for the entire period, is also added as one of the causal 
variables. After completion of the aforesaid tasks, a refined dataset comprising of nine 
variables, namely month index, total precipitation, air temperature, surface pressure, soil 
water, resultant wind speed, geopotential height, relative humidity and SSAI, is obtained.

Next, the variables are scaled, excluding the month index and SSAI features. In this pro-
cess, the dataset is initially divided into two segments: training (80%) and testing (20%). 
Thereafter, the time series of the variables are subtracted from its training data mean and 
divided by its training data standard deviation. It may be noted here that we have selected 
the training dataset from January 1972 to December 2009, and the testing dataset from Jan-
uary 2010 to February 2019, with the intent to keep the testing period as recent as possible.

3.3  Proposed Deep Learning Model

Conv1D is a type of CNN that uses 1-dimensional convolutional operations to extract hid-
den, nonlinear, and complex dataset characteristics and learn causal-target association. 1D 
filters provide real-time, low-cost hardware implementation (Kiranyaz et  al. 2019). The 
Conv1D model created in this study predicts SSAI values at varied lead periods.

CNN architectures typically have input layer, hidden layer(s), and output layer. The 
model’s initial convolutional layer (i.e., the input layer) has input shape as an argument. 
The CNN model, specifically its Conv1D variant, requires three-dimensional tensor data 
(number of samples, time steps, features). Other than the input shape argument, the ini-
tial Conv1D layers have the same arguments as hidden layer ones. The number of filters, 
strides, kernel initializer, kernel regularizer, activation function, padding, and other hyper-
parameters control the computation of the Conv1D layer. Details about the function of dif-
ferent hyperparameters of the Conv1D layer can be found in Kiranyaz et al. (2019).

The hidden layer follows the input layer. These layers represent the model’s computa-
tion engine and are problem specific i.e., their number and type are not fixed. Common 
hidden layers include convolutional, pooling, dropout, flatten, and dense/fully connected 
layers. The hidden layer(s) convolutional layer works similarly to the first layer. In a con-
volutional layer, the next layer’s neurons are linked to an area of the preceding layer. This 
type of connection captures only the effective predictors of the target value, minimizing 
the need to investigate all characteristics, making it useful for handling large input sets. If 
employed, the pooling layer, another hidden layer, follows the convolutional layer. These 
layers reduce the preceding convolutional layer’s representation scale. There are average 
and maximum pooling layers. Average pooling layer takes average value, while maximum 
pooling layer chooses greatest value in each filter-overlaid input region.

Other types of hidden layers, such as the dropout layer, help to tackle the problem of 
overfitting (if any) in a DL model (Srivastava et  al. 2014). The flatten layer follows the 
last convolutional/pooling/dropout layer in Conv1D and reduces three-dimensional shape 
to one-dimension for the FCL. Generally, FCL is commonly used as an output layer in 
the Conv1D model. However, they can also be used as a hidden layer, depending on 
the requirements of the problem. Number of neurons in output FCL symbolizes targets. 
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Similar to Conv1D, FCL layers include numerous arguments, such as number of neurons, 
activation function, kernel initializer, kernel regularizer, etc., that affect their operation. A 
comprehensive explanation of the FCL layers is available in ASCE Task Committee 2000.

3.4  Performance Evaluation of the Conv1D‑Based HDPF

3.4.1  Assessment of the Conv1D‑Based HDPF in the Prediction of SSAI

The Conv1D-based HDPF is trained to predict 1- to 6-month(s) hydrological drought 
(SSAI values) simultaneously. The performance during the training and testing is assessed 
with the help of four popular statistical metrics: i) Coefficient of Correlation ( r ), ii) Root 
Mean Squared Error ( RMSE ), iii) Kling-Gupta Efficiency ( KGE ), and (iv) Refined Index 
of Agreement ( D

r
 ) (Pearson and Henrici 1895; Gupta et  al. 2009; Willmott et  al. 2012; 

Chai and Draxler 2014). The mathematical expressions of these metrics are provided in the 
Supplementary Section S2.

3.4.2  Assessment of the Conv1D‑Based HDPF in the Prediction of Drought Categories

The performance of the hydrological drought category is assessed with the help of a con-
tingency table. A typical contingency table for c × c dimension along with a detailed expla-
nation are provided in the Supplementary Section S3.

3.4.3  Contemporary Approaches

To establish the efficacy of the proposed Conv1D-based HDPF, LSTM-based HDPF is 
developed to forecast the hydrological drought (upto 6 months advance) by using the same 
proportion of training and testing datasets as utilised in the prior case. Additionally, a com-
parison of the proposed framework is also made with SVR and FNN models. A detailed 
description of these are provided in Section 4.3.

4  Results and Discussion

4.1  Performance Assessment of the Conv1D‑Based HDPF in Predicting Hydrological 
Drought

The developed Conv1D-based HDPF is tested to predict hydrological drought, at six 
consecutive leads simultaneously. A discussion about the model development process is 
provided in Supplementary Section  S4. The predicted SSAI time series during the test-
ing period in the case of 1-, 2-, 3-, 4-, 5- and 6-month leads lies between, Jan 2010-Feb 
2019 (110 months), Feb 2010-Feb 2019 (109 months), Mar 2010-Feb 2019 (108 months), 
Apr 2010-Feb2019 (107 months), May 2010-Feb 2019 (106 months), Jun 2010-Feb 2019 
(105 months), respectively.

Table 1 shows the performance of the Conv1D-based HDPF in terms of r , RMSE, KGE, 
and D

r
 , obtained for the training and testing period at the selected six leads. It can be 

observed in the table that model prediction efficiency (KGE) during the testing period, at 
1-month lead is 79%, which is quite good. However, a decrease in KGE is noticed at longer 
lead, which is quite expected. The range of KGE values obtained, at various lead months 



Development of a Long‑Range Hydrological Drought Prediction…

1 3

during the training and testing periods lies between 0.81 to 0.92 and 0.70 to 0.85, respec-
tively. Likewise, the performance, evaluated in terms of the other three metrics, is also rea-
sonably good. For instance, a range of values between 0.96 to 0.98 ( r value), 0.26 to 0.31 
(RMSE value), and 0.85 to 0.90 ( D

r
 value) during training and 0.93 to 0.96 ( r value), 0.35 

to 0.42 (RMSE value), and 0.81 to 0.85 ( D
r
 value) during testing is obtained. Moreover, 

a comparable performance during the training and testing period at each lead ensures the 
proper training/validation of the Conv1D model during its development and hence eradi-
cates any doubt of overfitting/underfitting of the model.

Additionally, the performance of the proposed framework is also visualized through bar 
plots and scatter plots. Figure 3 illustrate these plots for the testing dataset obtained at six 
leads. It is noticed that the majority of the observed SSAI values, which indicates above/
below-normal events, are effectively captured at a 1-month lead. However, a marginally 
lower performance in capturing SSAI is noticed in the advanced lead. The potential of the 
Conv1D in capturing the hydrological extremes is also visible in the scatter plots, shown 
on the right side, in Fig. 3. The marginal deviation between the 45-degree line (red colour) 
and the best-fit line (black colour), drawn in the scatter plot, demonstrates the efficacy of 
the framework at all six leads, and the same is also evident from the performance metrics 
shown in Table 1.

Moreover, an in-depth analysis of the Conv1D-based HDPF performance in categoriz-
ing near above/below-normal events is also carried out. An explanation of the same is pro-
vided in the following subsection.

4.2  Potential of Conv1D‑Based HDPF in the Characterization of Drought Severity 
at Multi‑Step Lead (Upto 6 Month)

A contingency table is prepared to demonstrate the effectiveness of Conv1D-based HDPF 
in categorizing drought severity. Figure  4 shows the contingency table, compiled using 
the testing performance of the proposed framework to compare the observed vs. predicted 
SSAI, classified into various categories based on the severity of above/below-normal flow 
events, at each predicted lead. It is observed that out of a total of 6 extreme dry events that 
occurred during each 1-, 2- and 3-month lead, the model is able to capture 4, 5, and 2 dry 
events in each lead respectively. The remaining events at, 1-month lead (i.e., 2 events) are 
classified as severe drought, 2-month lead (i.e., 1 event) is classified as moderate drought, 
and, 3-month lead (i.e., 4 events), 3 are classified as severe and 1 is classified as a moder-
ate dry event(s). Likewise, during the 5- and 6-month lead prediction, out of a total of 5 

Table 1  Performance of 
Conv1D-based HDPF in 
predicting SSAI at different leads 
(in months) during the training 
(tr) and testing (ts) periods

Lead Time Coefficient 
of Correla-
tion

Root Mean 
Square 
Error

Kling Gupta 
Efficiency

Refined 
Index of 
Agreement

tr ts tr ts tr ts tr ts

1 Month 0.98 0.96 0.27 0.34 0.81 0.79 0.86 0.85
2 Month 0.98 0.95 0.29 0.36 0.83 0.85 0.85 0.84
3 Month 0.96 0.95 0.27 0.37 0.81 0.74 0.88 0.84
4 Month 0.96 0.94 0.27 0.38 0.92 0.75 0.89 0.84
5 Month 0.96 0.95 0.26 0.39 0.88 0.72 0.90 0.83
6 Month 0.96 0.94 0.31 0.41 0.81 0.70 0.86 0.82
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and 4 extreme dry events that occurred, 4 were classified as severe dry and 1 as moder-
ate dry, and 3 were classified as severe dry and 1 as moderate dry, respectively. Thus, the 
Conv1D-based HDPF shows a promising performance in predicting extreme dry events 
effectively; however, its accuracy decreases gradually with the increase in lead time.

Similar to the measure of the effectiveness of the model in categorizing extreme dry 
events, the accuracy of the proposed HDPF is also assessed in categorizing severe dry 

Fig. 3  Conv1D-based HDPF performance in prediction of hydrological drought, viz., a 1-month lead, b 
2-month lead, c 3-month lead, d 4-month lead, e 5-month lead, f 6-month lead. Bar plots (left) and scatter 
plots (right) depict the observed and predicted values of SSAI at different leads during the testing period
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 events accurately at 1-, 2-, 3-, 4-, 5-, and 6-month lead (Fig. 4). Overall, in 
general, from Fig. 4, it can be concluded that the contingency tables at all the leads have 
a large forward diagonal, which implies that above/below-normal flow event category 
classification during the testing period of the proposed Conv1D-based HDPF is reason-
ably accurate.

In fact, 82 out of 110 (75%) at 1-month lead, 80 out of 109 (73%) at 2-month lead, 80 
out of 108 (74%) at 3-month lead, 76 out of 107 (71%) at 4-month lead, 74 out of 106 
(70%) at 5-month lead and 73 out of 105 (70%) at 6-month lead are accurately predicted 
by the proposed HDPF. It is further noticed that Conv1D-based HDPF performance at 
longer leads is reduced towards both sides of high extremes, i.e., at D

2
 , W

2
 , whereas for 

lower extreme categories (wet and dry), the performance is reasonably good, even at 
higher leads. In other words, it can be said that the model is not biased towards any spe-
cific side of the extreme. Moreover, the above/below-normal flow event category clas-
sification performed by the Conv1D-based HDPF is also analysed in terms of KSS and 
HSS scores. These scores are also estimated from the contingency table (Fig.  4) with 
the help of mathematical formulas provided in Supplementary Section S3. The KSS and 
HSS scores for 1- to 4-month leads are reasonably good and are greater than 0.43. How-
ever, similar to the performance of other metrics, a decrease in KSS and HSS scores are 
also observed with advancing lead, although the scores are greater than 0.33 (KSS) and 
0.38 (HSS) even at a 6-month lead.

Overall, from the aforesaid discussion of prediction of hydrological extremes (both 
dry and wet events), in terms of skill scores, viz., accuracy, KSS and HSS, and metrics, 
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Fig. 4  The compilation of contingency tables at six leads are shown to compare the observed vs. predicted 
SSAI, classified into various categories based on the severity of the flow events. The tables illustrate seven 
categories: namely, near-normal (N) i.e. [− 1, 1], moderately dry ( D
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2
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extremely wet ( W
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) i.e. > 2. These tables assess the effectiveness of the Conv1D-based HDPF in capturing 

these categories
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r, RMSE, KGE, and Dr, it can be concluded that the proposed Conv1D-based HDPF per-
formance is reasonably good.

4.3  Comparison of Conv1D‑Based HDPF with LSTM, SVR and FNN Based Framework

In this section, the performance of Conv1D-based HDPF is benchmarked against three 
well-established models, namely LSTM, FNN and SVR. The details about the same are 
discussed below.

Firstly, an LSTM-based HDPF is developed to predict SSAI values 6 months in advance, 
utilising the same proportion of training and testing datasets as employed in the proposed 
framework. A detailed description of LSTM model development is provided in Supple-
mentary Section S5.

Supplementary Table  S4 shows the performance of LSTM-based HDPF during the 
training and testing period in terms of r , RMSE, KGE, and D

r
 . Analysis of Table S4 indi-

cates that LSTM’s predictive efficiency (KGE) consistently falls within the range of 0.81 
to 0.91 during the training period and 0.70 to 0.86 during testing, across all lead times. 
Similarly, the performance metrics r , RMSE, and D

r
 exhibit values between 0.96 to 0.98, 

0.94 to 0.97, and 0.85 to 0.90 during training, and 0.94 to 0.97, 0.36 to 0.42, and 0.81 to 
0.89 during testing, respectively. The observed range of metric values suggests that the 
LSTM framework is also reasonably effective in predicting hydrological drought at lead 
times ranging from 1 to 6 months.

Next, the performance of the proposed Conv1D- and LSTM-based HDPFs is com-
pared. To facilitate this comparison, the performance metrics of Conv1D-based HDPF (in 
bold) are also provided in Supplementary Table S4. From the table it can be observed that 
the performance of both frameworks is comparable across all the leads. However, from 
the model configuration and computational aspects, it is observed that LSTM model has 
a greater number of trainable parameters and takes more time to train on a defined set 
of hyperparameters. Supplementary Table S5 illustrates the summary of the Conv1D and 
LSTM models’ parameters of each layer utilized in the prediction of hydrological drought. 
Due to the presence of fewer trainable parameters in the computational engine (Conv1D 
layers) of the proposed framework model, the execution time is almost five times faster 
than the LSTM. Moreover, the optimized architecture of the Conv1D model is little deeper 
(6 layers) than the LSTM model (4 layers), but still the computational time is less (Sup-
plementary Table S5). The execution time mentioned in this table are specifically the time 
taken by the model to get trained and validated with a finalized set of hyperparameters. 
To finalize a single set of hyperparameters, many such runs are required. Therefore, the 
shorter the execution time of one run, the faster will be the grid search of hyperparameters 
and subsequently the finalization of the model architecture.

Before concluding, the performance of the proposed Conv1D-based HDPF is also com-
pared with FNN and SVR. However, the respective performance of these approaches is 
sourced from a prior study conducted by Dutta and Maity (2021). In this study, hydrologi-
cal drought forecast for the same basin, using SSAI values and a similar time length and 
set of meteorological precursors, is carried out at a 1- to 3-month lead. The FNN and SVR 
models developed by the authors are time-varying as well as time invariant models, and the 
results presented are for a testing period spanning between 2001 and 2018. The model’s 
performance is assessed in two ways: a) by analysing the monthly series of the dataset 
and, b) considering all months as a single series. Supplementary Table S6 presents the per-
formance of the SVR and FNN models when considering all months as a single series at 
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1- and 3-month leads, along with the performance of Conv1D at the same leads. The table 
reveals that the performance of the SVR and FNN models, measured in terms of r, RMSE, 
NSE and Dr, is at subpar as compared to proposed framework’s model.

5  Conclusions

In this study, we introduce a DL based computational framework, named as Conv1D-based 
HDPF, which acts as an efficient tool in performing long lead prediction of hydrological 
drought (up to 6 months at a monthly scale). The developed HDPF is able to provide more 
than 70% accuracy even at 6-month lead, indicating its capability of extracting the complex 
and hidden information from the pool of meteorological precursors along with its evolu-
tion over time and influence on the upcoming drought status. Notably, the improved effi-
ciency is also due to the optimal computational efficiency that is achieved through rigorous 
estimation and evaluation of hyperparameters. Moreover, the performance of the proposed 
methodology is benchmarked against three well-established models: LSTM, FNN and SVR 
to prove HDPF’s benefits and efficacy.

Overall, this study makes a significant contribution to hydroclimatic research by intro-
ducing the Conv1D-based HDPF for long-lead hydrological drought prediction, paving 
the way for further advancements in the field. The capability to forecast long-term hydro-
logical drought has practical implications across various sectors, including water resource 
management, agricultural planning, and drought assessment and preparedness. It is essen-
tial to highlight that when extending the application of the proposed framework to other 
basins, careful consideration of the unique characteristics and hydrometeorological precur-
sors of the target basin during model re training and validation, to update parameters and 
hyperparameters, is crucial. Since the model has been rigorously trained and validated for 
an Indian basin, updating parameters and hyperparameters for application to other basins 
lying in the Indian mainland is comparatively straightforward. Furthermore, the prospect 
of conducting multi-basin assessments of hydrological drought using a unified modelling 
framework is kept as a future scope for this study.
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